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Solvency II

The major difference between Solvency I and Solvency II directives
is that the latter imposes a fair value valuation of assets and
liabilities to insurance companies.

The new standards take an economic view of the balance sheet
and require the computation of the economic capital, the
minimum capital giving the insurance company a 99.5% survival
probability over a one-year horizon.

Two approaches exist for the estimation of this economic capital:

a standard approach (standard formula),

an internal approach ([possibly partial] internal model).

The latter involves a finer analysis of the risks and requires the
distribution of capital consumption to be defined over a
one-year horizon.
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Computing the SCR

In a flat-rate environment, the Solvency Capital Requirement at
level α = 99.5% can be computed as

SCR = argminx

{
P
[
AC0 −

AC1

1 + r
> x

]
≤ 1− α

}
,

where ACt is the available capital at time t:

ACt = ANAVt + Xt + EQ

[
T∑

i=t+1

Xi

(1 + r)i

∣∣∣∣∣Ys , s ∈ [0, t]

]
,

where ANAVt is the adjusted net asset value, Xt is the profit due
to in-force business and Yt is the market conditions at time t.

The computation of the SCR thus includes two projections: the
first one from t = 0 to t = 1 (in the real world), and the second
one from t = 1 to t = T (in the risk-neutral world).
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Monte Carlo nested simulations

The expectation appearing in the definition of Available Capital is
generally not computable analytically, due to the very complex
interactions between X and Y .

It can however be estimated using Monte Carlo simulations.

The expectation is then approximated by a sum over stochastic
scenarios:

EQ

[
T∑

i=t+1

Xi

(1 + r)t

∣∣∣∣∣Ys , s ∈ [0, t]

]
≈ 1

K

K∑
k=1

(
T∑

i=t+1

X k
i

(1 + r)t

)
.

Two sets of stochastic scenarios have to be produced: outer
scenarios for the evolution of all the variables during first year and
inner scenarios for the expectation evaluation.
This approach is called the Nested Simulations.
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Monte Carlo nested simulations

Outer scenarios 

(real world) 

Inner scenarios 

(risk-neutral world) 

t=0 t=1 t=2 … t=T 
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The Least Squares Monte Carlo approach

Nested Simulations are extremely time- and memory-consuming.
Think about a mid-sized insurance portfolio with 100,000 policies,
10,000 outer scenarios and 1,000 inner scenarios... If we can
project 1 policy (outer+inner) in 0.001 s., the total would take
more than 30 years to process.

An alternative to the nested simulations approach is the Least
Squares Monte Carlo approach.

It consists in producing only a small number of inner scenarios and
thereafter performing a least squares regression of the obtained
values on the market conditions at time t = 1.

The expectation is then computed as the average of the
predictions given by the fit.
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The Least Squares Monte Carlo approach

Outer scenarios 

(real world) 

LSMC scenarios 

(risk-neutral world) 

t=0 t=1 t=2 … t=T 
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First uses of the LSMC techniques

The Least Squares Monte Carlo techniques have first been used in
the valuation of American options by Longstaff and Schwarz in
2001.

The first authors to present an application of the LSMC to the
calculation of an insurance economic capital were Bauer, Bermann
and Reuss in 2010.

The application of LSMC techniques to financial option pricing has
been implemented in R.

→ package LSMonteCarlo.

However, such an implementation does not exist for the insurance
framework.
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The regression

The regression of the average LSMC scenarios on the stock values
is the core of the technique.

Theoretical justification: the random variable E[f (X )|Y ] ∈ L2 can
be approximated using a truncation of its Hilbert decomposition

E[f (X )|Y ] ≈
D∑
i=0

ci g
i ci ∈ R, g i ∈ L2.

The orthonormal basis {g0, g1, . . . } is often chosed among
weighted orthonormal polynomials, such as Laguerre, Hermite,
Legendre or Chebyshev polynomials.

→ package orthopolynom.
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Algorithm

We consider N outer scenarios and K LSMC scenarios (K is
intended to be rather small).

In order to obtain the available capital at time t = 1:

1. Produce N outer scenarios in real world : s i (i = 1, . . . ,N),

2. For each i , produce K LSMC scenarios in risk-neutral world :
s i ,j(i = 1, . . . ,N ; j = 1, . . . ,K ),

3. Perform a least squares regression of these s i ,j on some
functions of the market values at t = 1,

4. Compute the final expectation as the mean of the predictions
given by the model.
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Example of results: toy model

Let us consider a very simple model: a life insurance company sells
10 years-pure endowment contacts (guaranteed rate of 3.5%), with
profit share (90% of profits are redistributed).

Its entire assets portfolio is invested in stocks (modelled with a
GBM).

We assume that the only source of randomness is the evolution of
the company’s assets: the interest rate is not stochastic and
mortality is not taken into account.
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Results

Distribution of losses with LSMC 
 (500 outer sc., 20 lsmc sc., 150 seconds)

losses

D
en

si
ty

430.5 430.6 430.7 430.8 430.9

0.
00

0.
05

0.
10

0.
15

0.
20 430.6453430.4711

Distribution of losses with nested 
 (500 outer sc., 500 nested sc., 4278 seconds)

losses
D

en
si

ty

430.5 430.6 430.7 430.8 430.9

0.
00

0.
05

0.
10

0.
15

0.
20 430.6388430.4914

The relative difference between the two quantiles is 0.0047 %.
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Multiple risk factors

Of course, real insurers are exposed to more than one risk factor.
Several variables are then used as regressors for the conditional
expectation.

Such risk factors include:

Market prices of financial securities,

Short, medium and long term rates,

Exchange rates,

Prices inflation,

Health costs inflation,

Lapses,

Mortality,

...
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The regression with multiple risk factors

When using mutliple risk factors, mutlidimensional polynomials are
often used for the regression.
In this framework, the choice of the variables to include and the
degree of the polynomials to use is a major issue.
In real life situations, the number of regressors can be huge:

D x R 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 5 9 14 20 27 35 44
3 3 9 19 34 55 83 119 164
4 4 14 34 69 125 209 329 494
5 5 20 55 125 251 461 791 1286
6 6 27 83 209 461 923 1715 3002
7 7 35 119 329 791 1715 3431 6434
8 8 44 164 494 1286 3002 6434 12869

13/ 19



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Choice of the regressors

A lot of econometric techniques exist for the selection of the best
model from a specific set of models. Among them,

Selection (forward),

Elimination (backward),

Bidirectional (mixed).

Among the various criteria for significance (R2, AIC , BIC , Cp, ...),
Bauer et al show that the Mallow criterion Cp is well suited for
LSMC, as it is good at handling heteroskedasticity of residuals.

→ package leaps.
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Choice of the number of simulations and the maximal
degree of the polynomials

If all the relevant risk factors are considered,

ÊLSMC (N,D) −→ E = EQ

[
T∑

i=t+1

Xi

(1 + r)t

∣∣∣∣∣Ys , s ∈ [0, t]

]

as N,D → ∞.

We need to quantify the speed of the convergence in order to
select values for N and D.
The first idea would be to fix a treshold τ > 0 and keep increasing
N and D as long as ∣∣∣ÊLSMC (N,D)− E

∣∣∣ > τ.

However the limit E is of course unknown.
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Validation scenarios

To overcome this difficulty, the method of the validation scenarios
is widely used.

It consists in selecting some scenarios (generally as few as 20) by
expert judgement based on information obtained on the
distribution so as to cover its main segments.

A common technique is to define shocks for every risk factor and
cross them to build validation scenarios.
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A SSE surface

DN

S
S

E

Sum of squared error

1.5

2.0

2.5

3.0

3.5
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Conjugate with other time optimization tools

As the LSMC techniques aim at reducing the time necessary to
compute simulations, other tools with the same purpose are often
simultaneously used.

Among them, let us mention

Variance reduction techniques, such as antithetic variates,
control variates, stratified sampling, ...

Parallel computing (package parallel among others),

Just-in-time compiler (package compiler),

Implementation of some parts of the code in a compiled
language (package Rcpp),

...
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Thank you for your attention!
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