Boosting Actuarial Regression Models in R

Carryl Oberson

Faculty of Business and Economics University of Basel

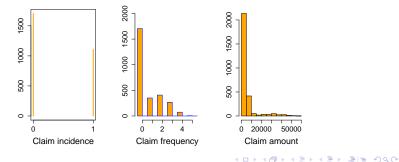
R in Insurance 2015

Boosting Actuarial Regression Models in R

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- Build regression models (GLMs) for car insurance data.
- 3 types of response variables:
 - claim incidence: $y_i = 0, 1$
 - claim count: *y*_i = 0, 1, 2, ...
 - claim amount: $y_i \in \mathbb{R}_{>0}$
- Fit each model using the gradient boosting algorithm as implemented in the R package mboost.
- Assessment of the out-of-sample predictive power using 5-fold cross-validation.
- Does boosting increase the predictive accuracy of the models?

Car insurance data set


- The dataset is retrieved from the SAS Enterprise Miner database.
- Only a subset of the raw dataset is used (similarly as in Yip and Yau, 2004).
- We have N = 2'812 observations on 29 variables.
- Information on claim profiles for each policyholder
- 22 Potential risk factors affecting the response variables:
 - Policy details (e.g. policy date, usage of the car, etc.)
 - Driving records (e.g. whether driving licence has been revolked)
 - Personal information (gender, age, job category, etc.)

Introduction Data Methodology Results

Car insurance data set

- > library("cplm")
- > data(AutoClaim)

```
> data <- subset(AutoClaim, IN_YY == 1)</pre>
```


Boosting Actuarial Regression Models in R

< 🗇

The component-wise gradient boosting algorithm

- ... is a machine learning method for optimizing prediction accuracy.
- ... carries out variable selection.
- ... results in prediction rules that have the same interpretation as common statistical model fits

The optimal prediction function f^* to estimate is defined by

$$f^* := \operatorname{argmin}_f \mathbb{E}_{Y,\mathbf{X}}[\rho(y, f(\mathbf{X}^{\top}))]$$
,

where ρ is a loss function assumed to be differentiable wrt *f*. In practice, the observed mean $R := \sum_{i=1}^{n} \rho(y_i, f(\mathbf{x}_i^{\top}))$ is minimized.

The algorithm minimizes *R* over *f*:

- Initialize the function estimate $\hat{f}^{[0]}$ with offset values. $\hat{f}^{[m]}$ denotes the vector of function estimates at iteration *m*.
- Specify a set of P base-learners
- Increase *m* by one

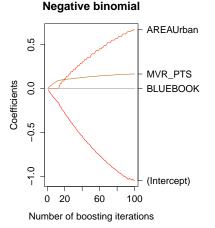
4

- Compute the negative gradient $-\frac{\partial \rho}{\partial f}$ and evaluate it at $\hat{f}^{[m-1]}(\mathbf{x}_i^{\top}), i = 1, ..., n$. This yields $u^{[m]} = (u_i^{[m]})_{i=1,...,n}$
 - Fit each of the *P* base-learners to $u^{[m]}$.
 - Set $\hat{u}^{[m]}$ equal to the fitted values of the best fitting base-learner according to the *RSS* criterion.
 - Update the estimate: $\overline{\hat{f}}^{[m]} = \hat{f}^{[m-1]} + \nu \hat{u}^{[m]}, \quad 0 < \nu < 1.$

Solution Iterate 3 and 4 until stopping iteration m_{stop} is reached.

Illustration of boosting in R: claim frequency

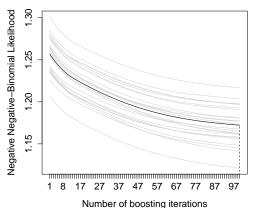
```
> library("mboost")
> NB_boost <- glmboost(formula, data = da_NA_omit, center=TRUE,
+ family=NBinomial(nuirange = c(0, 100)))
> coef(NegBin_boost, off2int=T)
  (Intercept) BLUEBOOK MVR_PTS AREAUrban
-1.048850e+00 -1.207679e-06 1.650647e-01 6.700787e-01
> plot(NegBin_boost, main="")
```


Estimate the optimal number of boosting iterations:

```
> set.seed(1234)
> m_stop_NB <- cvrisk(NegBin_boost)
> mstop(m_stop_NB)
[1] 100
> plot(m_stop_NB)
```

Boosting Actuarial Regression Models in R

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで


Illustration of boosting in R: claim frequency

Boosting Actuarial Regression Models in R

▶ ▲ 王 ▶ 王 = 9 Q Q

Illustration of boosting in R: claim frequency

25-fold bootstrap

Boosting Actuarial Regression Models in R

11 9 9 9 C

ъ

k-Fold Cross-Validation is used to assess the predictive power of the models.

- randomly divide the data set into k groups, or folds.
- If itst fold is treated as the validation (or test) set
- (a) the method is fitted on the remaining k 1 folds.
- MSE₁ is computed on the observations in the held-out fold.
- Sompute similarly MSE_i for i = 2, ..., k.
- The test error rate is then simply estimated by

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Claim incidence: logit regression

	complex model		small model	
Criterion	glm.boost	glm	glm.boost	glm
logLik	-1191.8	-1174.5	-1207.8	-1206.1
AIC	2413.7	2422.9	2427.6	2424.1
$CV_{(5)}$	0.30046	0.030770	0.29715	0.30165

Boosting Actuarial Regression Models in R

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Claim frequency: negative binomial regression

	complex model		small model	
Criterion	glm.boost	glm	glm.boost	glm
logLik	-2732.6	-2673.9	-2732.6	-3434.4
AIC	5475.2	5423.7	5475.2	6878.797
$CV_{(5)}$	1.14188	1.26534	1.14139	1.10398

Boosting Actuarial Regression Models in R

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Claim amount: log-normal regression

	complex model		small model	
Criterion	glm.boost	glm	glm.boost	glm
logLik	-1074.5	-1055.9	-1073.0	-1072.8
AIC	2158.2	2187.8	2154.1	2155.7
<i>CV</i> (5)	86406113	95110077	82423508	85144234

Boosting Actuarial Regression Models in R

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Gradient boosting improves forecasting accuracy of statistical models
- Performs variable selection: useful in a context of high dimensional data
- Further issues to explore:
 - use of more flexible regression models: GAM, GAMLSS
 - claim frequency: Hurdle model
 - other?

Boosting Actuarial Regression Models in R

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

For Further Reading I

 B. Hofner, A. Mayr, D. Windover, N. Robinzonov, M. Schmid.
 Model-based Boosting in R; A Hands-on Tutorial Using the R Package mboost *Computational Statistics*, 29:3-35., February 2012
 T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning

Springer Series in Statistics, Second Edition, 2008.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの