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Mortality Modelling Context
• Ageing populations are a major challenge for many

countries.
• Fertility rates are declining while life expectancy is

increasing.

• longevity risk: the adverse financial outcome of people
living longer than expected⇒ possibility of outliving their
retirement savings.

• long term demographic risk has significant implications for
societies and manifests as a systematic risk for pension
plans and annuity providers.

• Policymakers rely on mortality projection to determine
appropriate pension benefits and regulations regarding
retirement.

4 / 45



5 / 45



6 / 45



Mortality Modelling Context

Enhancing mortality models requires an understanding of
common features of mortality behaviour [Cairns, Blake and
Dowd, 2008]

• Mortality rates have fallen dramatically at all ages.
• Rate of decrease in mortality has varied over time and by

age group.
• Absolute decreases have varied by age group.
• Aggregate mortality rates have significant volatility year on

year.
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Stochastic Mortality Models

The uncertainty in future death rates can be divided into two
components:

• Unsystematic mortality risk. Even if the true mortality
rate is known, the number of deaths, will be random.

• larger population⇒ smaller unsystematic mortality risk
(due to pooling of offsetting risks - diversification).

• Systematic mortality risk. This is the undiversifiable
component of mortality risk that affects all individuals in the
same way.

• Forecasts of mortality rates in future years are
uncertain.
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Stochastic Mortality Modelling

• [Lee and Carter, 92] proposed a stochastic mortality model
(LC) to forecast the trend of age-specific mortality rates.

• Several extensions to Lee-Carter model have been
proposed, overview in [Fung et al. 2017].

Survival probability is still consistently underestimated
especially in the last few decades ([IMF, 2012]).

This talk considers models aiming to help resolve this issue via

• Stochastic State-Space Mortality Models with Period
and Cohort stochastic latent effects (LCC).

• + Extensions to State-Space Hybrid Regression
Structures!

(see [Fung et al. 2017] and [Fung et al. 2018])
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Stochastic Mortality Modelling

A state space model has two model components:
• a stochastic observation equation; and
• a stochastic latent Markov state process.

Key advantages of state space modelling approach:
• remove awkward identification specifications;
• computational efficiency and numerical robustness;
• accurate in-sample and out-of-sample forecasts;
• optimal statistical efficiency and unbiased estimation;
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Stochastic Mortality Modelling

Period-Cohort effect state-space formulation
Observation equation: log crude death rates, yx ,t = ln m̂x ,t ,
follow:

ln m̂x ,t = αx + βxκt + βγx γt−x + εx ,t ,

where εx ,t is a regression noise term.

• α = αx1:xp := [αx1 , . . . , αxp ] represents the age-profile of
the log death rates

• β = βx1:xp measures the sensitivity of death rates for
different age group to a change of period effect κt .

• βγ = βγx1:xp measures the sensitivity of death rates for
different age group to a change of cohort effect γt−x .
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Stochastic Mortality Modelling

Observation Process: in matrix form.


yx1,t
yx2,t

...
yxp,t

 =


αx1

αx2
...
αxp

+


βx1 βγx1 0 · · · 0
βx2 0 βγx2 · · · 0
...

...
...

. . .
...

βxp 0 0 · · · βγxp



κt
γx1

t
γx2

t
...
γ

xp
t

+


εx1,t
εx2,t

...
εxp,t

 .

Here (κt , γ
x1
t , . . . , γ

xp
t )> is the p + 1 dimensional latent state

vector. γx
t := γt−x
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Stochastic Mortality Modelling

State Equation in matrix form:

κt
γx1

t
γx2

t
...

γ
xp−1
t
γ

xp
t


=



1 0 0 · · · 0 0
0 λ1 λ2 · · · λp−1 λp
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0





κt−1
γx1

t−1
γx2

t−1
...

γ
xp−1
t−1
γ

xp
t−1


+



θ
η
0
...
0
0


+



ωκt
ωγt
0
...
0
0


.

Period effect κt is a random walk with drift process with
ωκt

iid∼ N(0, σ2
ω) and Cohort effect γx1

t is a stationary AR(p)

process with ωγt
iid∼ N(0, σ2

γ)
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State-Space Hybrid Factor Models
GOAL: develop stochastic mortality state-space hybrid factor
models.

• Hybrid := Stochastic Latent Factors + Observable
Covariate Features

• observable features extracted from demographic data

• Feature extraction should aim for dimension reduction
⇒ model parsimony.

[Toczydlowska and Peters, 2017] address important aspects of
feature extraction:

1 missing data in time-series and panel (matrix) structured
real demographic data;

2 noisy observations and outliers (in real data);
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State-Space Hybrid Factor Models
Two fundamental approaches to develop Hybrid Factor Models:

1 time varying factor with static loading coefficient
(classical distributed lag regressions such as ARDL
models);

2 static factor with time varying stochastic loading
coefficients.
(state space models e.g. dynamic Nelson-Siegel yield
curves).

• Option 2: suitable for high dimensional data, time series
/ panel structured but represented by relatively “short
time series” lengths.

• ⇒ particularly prevalent in demographic studies!
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State-Space Hybrid Factor Models

Consider the State-Space Hybrid Period-Cohort-Demographic Model

yt = α+ B̃t ϕ̃t + εt , εt
iid∼ N (0, σ2

εIp),

ϕ̃t = Λ̃ϕ̃t−1 + Θ̃ + ω̃t , ω̃t
iid∼ N (0, Υ̃)

where ϕ̃t = (ϕt ,%t ) is a (p + pk + 1)× 1 latent process vector of ϕt
stochastic mortality factors (period-cohort) and %t dynamic factor
loadings, with

Θ̃ =

(
Θ(p+1)×1
Ψpk×1

)
(p+pk+1)×1

a vector of drift parameters for state equations.
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State-Space Hybrid Factor Models

Consider three models:
Case 1: Factors in
Observation
Equation Only;

Case 2: Factors in
Period Effect State
Equation Only;

Case 3: Factors in
Cohort Effect State
Equation Only.

B̃t p×(p+pk+1) =


(

Bp×(p+1) F̃t

)
for Case 1,(

Bp×(p+1) 0p×pk

)
otherwise,

Λ̃(p+pk+1)×(p+pk+1) =



(
Λ(p+1)×(p+1) 0(p+1)×pk

0pk×(p+1) Ωpk×pk

)
for Case 1,

 Λ(p+1)×(p+1)
f̃Tt

0p×pk
0pk×(p+1) Ωpk×pk

 for Case 2,

 Λ(p+1)×(p+1)
01×pk

F̃t
0pk×(p+1) Ωpk×pk

 for Case 3.
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Probabilistic Feature Extraction

• Data Yt is observed (or partially observed) over periods
t ∈ {1, . . . ,n} and will be reduced to factors F̃t

Example: d countries demographic data and p denotes the
number of different demographic attributes observed
⇒ then p × d matrix of data in year t is Yt .

• We do not wish to utilise the raw demographic data
F̃t 6= Yt :

in general it will produce a model with too many parameters

• [Toczydlowska and Peters, 2017] considered stochastic
projection methods of dimensionality reduction

⇒ Probabilistic Principal Component Analysis (PPCA)
and Robust extensions.
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Probabilistic Feature Extraction
PCA by means of Factor Analysis: with n realisations of the
(p × d)-dimensional observed demographic data, vectorized
into columns Y.
Consider linear decompositions:

Yn×pd = Xn×pdWT
pd×pd + εn×pd .

Factor analysis assumes diagonal covariance for εt .

Stochastic Factor PCA: differs from deterministic PCA as
components xt and factor loading matrix W account for
correlation between elements of yt and only part of the
variation:

EyT
t yt = E

[(
xtWT + εt

)T (
xtWT + εt

)]
= WΛWT + Ψ.

In standard PCA xt and W account for the entire
covariance.
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Probabilistic Feature Extraction

Show xt and W account for correlation!

Example: assume xt ∼ N (0, Id ) and εt ∼ N (0,Ψ) to obtain,

yt |xt ,W,Ψ ∼ N
(

xtWT ,Ψ
)
,

π(yt |W,Ψ) =

∫
Rd
π(yt ,xt |W,Ψ)dxt = (2π)−

d
2 |C|−1 exp {−1

2
ytC−1yT

t }

for C = WWT + Ψ where |C| denotes the determinant of the
matrix.

• Notice that since Ψ is diagonal, the correlation structure
between components yt is specified by the matrix W.
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Probabilistic Feature Extraction
Show xt and W account for correlation cont.

Eigen decomposition of covariance C = Ud×dLd×dUT , for
diagonal L and orthonormal U, gives

0 = (C− L)U =
(

WT W + σ2Id − L
)

U =
(

WWT −
(
L− σ2Id

))
U.

• Thus, the matrix Λ =
(
L− σ2Id

)
and U are matrices of

eigenvalues and corresponding eigenvectors of WWT .
• Since λi = li − σ2 ≥ 0, the scalar σ2 can be chosen as the

smallest diagonal element of Λ.

• Factor loadings are given by UΛ
1
2 .

Assuming the error term εt is homogeneous s.t. Ψ = σ2Id ,
then estimating W via PCA given C = WWT + σ2Id is
identifiable.
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Probabilistic Feature Extraction
Feature Extraction via EM Algorithm Estimation!

Goal is to estimate:
• projection matrix W,
• vector µ and
• scalar σ2

given marginal distribution of Yt

Yt |Ψ ∼ N
(
µ,WWT + σ2Id

)
for the vector of static parameters Ψ =

[
W,µ, σ2] of the model.

The EM algorithm uses logarithm of the the complete data
likelihood, i.e. the joint distribution of Y1:N ,X1:N |Ψ given by

πY1:N ,X1:N |Ψ
(
y1:N , x1:N

)
=

N∏
t=1

πYt |Xt ,Ψ

(
yt
)
πXt |Ψ

(
xt
)

= (2π)
−N d+k

2
(
σ

2
)−N d

2 exp
{

−
1

2σ2

N∑
t=1

(
yt − µ − xt W

T
) (

yt − µ − xt W
T
)T

−
1

2

N∑
t=1

xt x
T
t

}
.
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Probabilistic Feature Extraction

Feature Extraction via EM Algorithm Estimation!

1. Expectation step: Expectation of the loglikelihood function of
the join distribution of Y1:N ,X1:N |Ψ for a fixed
vector of static parameters Ψ∗ with respect to the
conditional distribution X1:N |Y1:N ,Ψ

Q (Ψ,Ψ∗) = EX1:N |Y1:N ,Ψ

[
logπY1:N ,X1:N |Ψ∗

(
y1:N ,x1:N

)]
2. Maximisation step: Finding W∗,µ∗ and σ∗2 that maximize

Q (Ψ|Ψ∗)(
W∗,µ∗, σ∗2

)
= argmax

W∗∈Rd×k ,µ∗∈Rd ,σ∗2>0
Q (Ψ,Ψ∗)
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Probabilistic Feature Extraction

Theorem

The E-step of the EM algorithm for Gaussian Probabilistic Principal
Component Analysis given N realisations of the observation vector Yt
denoted by y1:N =

{
y1, . . . ,yN

}
is obtained in the closed form as

follows

Q (Ψ,Ψ∗) = EX1:N |Y1:N ,Ψ

[
logπY1:N ,X1:N |Ψ∗(y1:N ,x1:N)

]
= −N(d + k)

2
log 2π − Nd

2
logσ∗2 − 1

2

N∑
t=1

{
1
σ∗2

Tr
{

yT
t yt
}

− 2
σ∗2

ytµ
∗T +

1
σ∗2

µ∗µ∗T − 2
σ∗2

Tr
{

W∗EXt |Yt ,Ψ

[
XT

t
]
yt

}
+

2
σ∗2

EXt |Yt ,Ψ

[
Xt
]
W∗Tµ∗T + Tr

{( 1
σ∗2

W∗T W∗ + Ik

)
EXt |Yt ,Ψ

[
XT

t Xt
]}}

see details of expectations and proof in [Toczydlowska and
Peters, 2017].

27 / 45



Probabilistic Feature Extraction

Theorem

The maximizers of the function Q (Ψ,Ψ∗) are given by

µ∗ = µ̄(y1:N ; Ψ)
(
Id − WM−1W∗T

)
+ µWM−1W∗T

W∗ = C̄µ,µ∗(y1:N ; Ψ,Ψ∗)WM−1
(
σ2M−1 + M−1WT C̄µ(y1:N ; Ψ)WM−1

)−1

σ∗2 =
1
d

Tr
{

C̄µ∗(y1:N ; Ψ,Ψ∗) − 2W∗M−1WT C̄µ,µ∗(y1:N ; Ψ,Ψ∗)

+ W∗
(
σ2M−1 + M−1WT C̄µ(y1:N ; Ψ)WM−1

)
W∗T

}

see details of components and proof in [Toczydlowska and
Peters, 2017].
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Probabilistic Feature Extraction

Probabilistic PCA with Missing Data:
Until now, we assumed the data did not contain any missing
observations!

• Real demographic time series data have numerous types
of missingness.

• ⇒ missingness is an important aspect to address in the
feature extraction!

[Toczydlowska and Peters, (2017), (2018)] address different
components of PPCA in missing data estimation settings via
robust versions of Expectation-Maximisation.

• Distributional Extensions: Student-t, Skewed and
Grouped Student-t cases.
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Probabilistic Feature Extraction
Feature Extraction via EM Algorithm with MISSING DATA!

Define the indicator random variable Rt which decides which
entries of Yt are missing denoting them by 1, otherwise 0.

• Each observation consists of the pair [Yo
t ,Rt ] with

distribution parameterized according to parameters [Ψ,Θ]
respectively.

Likelihood is given by conditional probability Yo
t ,Rt |Ψ,Θ:

πYo
t ,Rt |Ψ,Θ

(
yo

t , rt
)

=

∫
πYo

t ,Y
m
t ,Rt |Ψ,Θ

(
yo

t ,y
m
t , rt

)
dym

t

=

∫
πRt |Yt ,Ψ,Θ (rt )πYt |Ψ,Θ (yt ) dym

t

We assume for simplicity a pattern of missing data according to
MAR - missing at random
• The assumptions imposes the indicator variable Rt to be

independent of of the value of missing data.
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Probabilistic Feature Extraction

Then the vector Yt which is MAR satisfies

πRt |Yt ,Ψ(rt ) = πRt |Yo
t ,Ψ

(rt )

resulting in

πYo
t ,Rt |Ψ,Θ

(
yo

t
)

= πRt |Yo
t ,Θ

(rt )

∫
πYt |Ψ (yt ) dym

t

= πRt |Yo
t ,Θ

(rt )πYo
t |Ψ
(
yo

t
)
.

⇒ Under the MAR assumption, the estimation of Ψ via
maximum likelihood of the joint distribution Yo

t ,Rt |Ψ,Θ is
equivalent to the maximisation of the likelihood of the marginal
distribution Yo

t |Ψ.
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Application

Demographic data that we extract “Observable” covariate
regression Features from:
• Data from Human Mortality Database

(http://www.mortality.org).

• We use four different data sets:
• Birth counts;
• Death counts;
• Life tables: Life Expectancy at Birth and Death Rates.

• The time series vary in terms of data structure, the
number of available observations and the missingness
attributes of the records.
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Application

TYPES OF DATA:
• One dimensional time series data per country per

gender
(31 countries, M and F, gives 124 time series):

• Birth counts and
• Life expectancy at Birth.

• Multivariate cross sectional time series data per
country & gender: age specific data for Death counts and
Death Rates.

• A single observation per country in time t describes:
• number of deaths of people with ages from 0 to 110+

(Death counts) or;
• number of deaths for ages from 0 to 110+ scaled to the size

of that population, per unit of time (Death Rates).
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Application

Model estimation performed by Forward-Backward Kalman Filter
within Rao-Blackwellised Adaptive Gibbs Sampler (MCMC).

The state space models we considered in our studies were of
type:

1 [LCC:] Lee-Carter model with the stochastic period + cohort
effect.

2 [DFM-PC:] demographic factor model versions of Lee-Carter
(Period-Cohort).

The factors are obtained by performing Probabilistic Principle
Component Analaysis PPCA jointly on the set of data for all
countries listed, excluding:
United Kingdom (response variable)
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LC State Space Model - only a Period Effect κt included.
UK (LC)
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Figure: In sample analysis residuals (left Female, right Male).
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LCC State Space Model - with Period + Cohort Effects κt , γt−x

included.
UK (Simplified Cohort)
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Figure: In sample analysis residuals (left Female, right Male).
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Application

• [DFM-PC-B:] the mean of first principal component of Birth
counts as a static parameter, age specific element of %t ;

• [DFM-PC-D-r/s:] the first principal component of Death
counts ( which is age and country specific) as an
exogenous factor, one element of %t corresponds to a
country specific subvector of the component.;

• [DFM-PC-Mx-r/s:] the first principal component of Death
Rates ( which is age and country specific) as an
exogenous factor, one element of %t corresponds to a
country specific subvector of the component.

r/s - is robust vs standard
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Application

• Out-of-Sample Study: Model calibration period is 1922− 2002
⇒ forecast performance analysis for 2003− 2013

Model MSE DIC MSEPMCMC MSEPKalman
LCC 0.0097 -3627 0.1778 0.1774
DFM-PC-B 0.0072 -6500 0.0057 0.0062
DFM-PC-D-r 0.0182 -6380 0.0177 0.0251
DFM-PC-D-s 0.0065 -5996 0.0185 0.0156
DFM-PC-Mx-r 0.0081 -8225 0.0111 0.0129
DFM-PC-Mx-s 0.0174 -3951 0.0692 0.0285

• The results confirm that adding demographic features, as
additional explanatory variables to the LCC model,
improves both in-sample fit out-of-sample fit and therefore
the predictability of log death rates.
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Figure: 10-year out-of-sample forecasted log death (y axis) rates by
age with corresponding prediction intervals.

40 / 45



Figure: 10-year out-of-sample forecasted log death (y axis) rates by
age with corresponding prediction intervals.
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Figure: 10-year out-of-sample forecasted log death (y axis) rates by
age with corresponding prediction intervals.
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Conclusions

• We explored how to construct a state space formulation of the
stochastic mortality models for Period and Cohort factors

• We explored how to extend to Hybrid Multi-Factor Stochastic
State-Space Mortality models with Period-Cohort factors as well as
demographic regressors.

• We briefly learnt about feature/covariate extraction methods to extract
the demographic factors used in the extended HMF Stochastic
State-Space Mortality models.

• Standard Lee-Carter Period-Cohort model consistently under estimates
forecast log-death rates

• Extended models proposed improve significantly the forecast
performance of log-death rates.
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