

Using Random Forest to estimate risk profiles and probability of breakdowns

Lara Andrea Neira Gonzalez

Introduction

- Industrial machines face different types of risks and are usually highly complex assets
- Difficulty to assess risk often results from incomplete knowledge about operating conditions and risk influencing factors
- Are there any forward looking risk indicator that can be used for the estimation of riskiness of the machine?

Why Machine Learning?

1

- We are in the age of "Big Data"
- How can we build models explaining more variation and allow for better interpretation?
 - Machine learning is one way to efficiently examine the search space

Random Forest

- Supervised machine learning technique which estimates variable importance measures (VIMs) associated with outcome
- Random Forest is able to detect single and interaction effects because of its own architecture.

Data and study design

- 32 variables from a Yankee dryer in a paper plant ("paper machine")
- 6 variables from a evaporation station from a sugar plant ("sugar machine")
- The study design for both studies was to use a training set with 2/3 of cases/controls, and independent test sample with a 1/3

Methods

- 1. We performed RF based on the VIM AUC
- 2. Obtain empirical p-values for each variable
- 3. Take the empirical significant variables
- Test for single effects from the empirical significant variables on our independent test dataset using Likelihood ratio tests from nested models based on general linear regressions.

Methods

1

- 5. Fit a model with all significant validated single effects
- 6. Test the AUC in the independent test

Results

- Sugar machine
 - All variables from the sugar machine were empirically significant
 - After testing for the single effects and looking for significance after Bonferroni correction (90 %, 95% and 99% confidence levels) :
 - 30 variables were significant
 - 29 at 99% confidence level
 - 1 at 90% confidence level

Results Sugar machine

1

Variable	Description	Significance	Explanatory impact	Way of impact	Mean
TC51_05	Juice temperature (1st evaporator inlet)	***	13.64	Risky	128.9
P57_04	P2 - juice pressure (valve outlet)	***	7.38	Protective	165.9
<u>P74_01</u>	P2 - water pressure (valve outlet)	***	7.19	Risky	2420.1
<u>T51_08</u>	Juice temperature (1st evaporator outlet)	***	7.11	Risky	133.1
<u>T57_03</u>	T - juice temperature (valve inlet)	***	6.98	Risky	94.2

• After fitting the model with all 30 significant validated variables, we got in an independent database an:

Results

- Paper machine
 - All variables from the sugar machine were empirically significant
 - After testing for the single effects and looking for significance after Bonferroni correction (90 %, 95% and 99% confidence levels) :
 - 5 variables were significant
 - 3 at 99% confidence level
 - 1 at 95% confidence level
 - 1 at 90% confidence level

Results Paper machine

-1

Variable	Description	Significance	Explanatory impact	Way of impact	Mean
throttle.position	throttle.position	Unessential	1.1	Protective	179.93
gas.mixer.position	gas.mixer.position	***	85.93	Risky	10309.91
turbo.position	turbo.position	***	3.95	Risky	289.94
turbo.setpoint	turbo.setpoint	***	3.62	Risky	296.37
U.gen.L1L2	U.gen.L1L2	**	2.42	Protective	304.89
speed	speed	*	2.24	Risky	13934.12

 After fitting the model with only the most significant variable, which have a R² = 85.93, the model reached in an independent database an:

$$AUC = 1$$

Discussion

- Both our studies found significant factors helping us to better understand the "mechanics of the failure" of the two machines and enable better prevention
- Our model predicts breakdowns better than any human and thus can help in decision making

Discussion

- Our findings can be used for creating risk profiles as our models could detect different significant factors which are playing an important role in the process of each machine
- The models can be used as a basis for pricing of insurances and managing of guarantees and warrantees for machine producer

Our Team

Lara A. Neira Gonzalez

Alfredo D. Egídio dos Reis

Martin Kreer

José-María Guerra

