

Machine Learning in the **real** world

SB Simply Business Machine learning for Insurance

Machine Learning for Retail (jaggu.com) B2B ML services (growthintel.com)

DAWN Project: **D**eep Learning to **A**nalyze Webb-detected **N**ascent-galaxies

Small
businesses
want
insuranceGo to our
website or call
centerGet quote
from insurers
in our panel

Simply Business Rating Engine

1

Please tell us about your business

What is your specific business / trade?	
Q <i>e.g. Builder, Painter and decorator, or Plumber</i>	
Or choose from the <u>full list of occupations</u>	
Do you have a secondary business activity / secondary trade?	2
What is your business postcode?	Risk Model Quote ££
How many years have you been running your own business in this industry?	
Please select 🗢	
Which of these categories best describes your business?	
Sole trader Partnership Ltd company	

Traditional Risk Models

Premium = *f*(frequency, severity)

- Frequency modeled with a Poisson distribution (or negative binomial distribution if data is over-dispersed
- Severity can be modeled with a Gamma distribution
- Data is model with a GLM (although some moving on to GBMs)

Traditional Risk Models

- The conditional variance is equal to the conditional mean (solved with a Negative Binomial Distribution)
- The occurrence of one event does not affect the probability that a second event will occur – events occur independently
- The rate at which events occur is constant

Simply Business ML Risk Model

Towards an automated process

Simply Business ML Risk Model

2

2 SB ML Risk Model: lightGBM

• **GOSS**: Gradient-based One-Side Sampling.

keeps all the instances with large gradients and performs random sampling on the instances with small gradients.

• **EFB**: Exclusive Feature Bundling

In a sparse feature space, many features are mutually exclusive. One can bundle exclusive features into a single feature (NP-Hard).

Natural Treatment of Categorical Features

Split on a categorical feature by partitioning its categories into 2 subsets. To find the optimal partition *LightGBM* sorts the histogram according to its accumulated values (*sum_gradient / sum_hessian*) and then finds the best split on the sorted histogram.

2 SB ML Risk Model: hyperopt

- TPE: tree-structured Parzen estimator (TPE): TPE models p(y) and p(x|y) Models p(x|y) by replacing the distributions of the configuration prior with nonparametric densities.
- The configuration space is described using uniform, log-uniform, quantized loguniform, and categorical variables.
- ●The TPE algorithm makes the following replacements: uniform → truncated Gaussian mixture, log-uniform → exponentiated truncated Gaussian mixture, categorical → re-weighted categorical
- Using different observations $\{x \ (1), ..., x(k)\}$ in the non-parametric densities, these substitutions represent a learning algorithm that can produce a variety of densities over the configuration space X

2 SB ML Risk Model: LIME

 Explains the predictions of any classifier by learning an interpretable model locally around the prediction

$$\xi(x) = \operatorname*{argmin}_{g \in G} \ \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

$$\mathcal{L}(f,g,\pi_x) = \sum_{z,z'\in\mathcal{Z}} \pi_x(z) \left(f(z) - g(z')
ight)$$

Where ξ is referred as "the explanation", \mathcal{L} is measure of how unfaithful g is in approximating f in the locality defined by π_x and $\Omega(g)$ is measure of complexity

Example: classifying mushrooms as "edible" or "poisonous"

Tabular data

http://savvastjortjoglou.com/intrepretable-machine-learning-nfl-combine.html

3 SB ML Risk Model Results

• Test results:

In an scenario where ~10% of the customers claim the f_1 score is:

f1_score(real, predicted) = 0.37
f1_score(real, predicted, average='weighted') = 0.84

		Claim Probability	Severe Probability	Net Premium
	Marisa	0.81	0.08	76
	Mark	0.83	0.25	709
	Javier	0.81	0.31	161
	Dani	0.81	0.34	675

4 The "fight" with the business

"Let's see if the algorithm works and then we see how we put it in production" Managing Director - MGA

"Until I feel comfortable we won't use it" Head of Underwriting

"We need to understand it to use it"; "I am not sure we need this" Senior Underwriter Analyst

Any questions ?

You can find me at:

• javier.rodriguez@simplybusiness.co.uk