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Cluster analysis

The task of grouping a set of objects such that:

Objects in the same group are as similar as possible.
Objects in different groups are as dissimilar as possible.

The aim is to determine a partition of the given set of objects, e.g.,
to determine which objects belong to the same group and which to
different groups.

Exploratory data analysis tool to detect structure in the data.

Statistical methods:

Heuristic methods: hierarchical clustering, partitioning
methods (e.g., k -means).
Model-based methods: finite mixture models.



Specifying the cluster problem

The cluster problem is in general perceived as ill defined.

Different notions of what defines a cluster exist:

Compactness.
Density-based levels.
Connectedness.
Functional similarity.

Several cluster solutions might exist for a given data set depending
on which notion is used.

The application context is important to define which clusters should
be targeted and to assess the usefulness of a clustering solution.
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Model-based clustering methods

Model-based clustering embeds the clustering problem in a
probabilistic framework.

This implies:

Statistical inference tools can be used.
Different cluster distributions can be used depending on the
cluster notion.
More explicit specification of what defines a cluster required
than for heuristic methods.



Finite mixture models

Generative model for observations yi given xi , i = 1, . . . , n:
1 Draw a cluster membership indicator Si from a multinomial

distribution with parameters η = (η1, . . . , ηK ).
2 Draw yi given xi and Si from the cluster distribution:

yi |xi ,Si ∼ fSi (yi |xi).

The distribution of yi given xi is then given by

yi |xi ∼
K∑

k=1

ηk fk (yi |xi),

where

ηk ≥ 0 for all k and
∑K

k=1 ηk = 1.
fk () represents the cluster distribution.
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Methods differ with respect to:

Clustering kernel:

Specification of cluster distributions.
Use of additional variables xi , e.g., for regression.

Estimation framework:

Maximum likelihood estimation.
Bayesian estimation.
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Cluster membership indicators can be inferred using the
a-posteriori probabilities:

P(Si = k |yi , xi) ∝ ηk fk (yi |xi).

A hard assignment can be obtained by:

Assigning to the cluster where this probability is maximum.
Drawing from this probability distribution.

⇒ Results in a partition of the data.
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Estimation of finite mixtures with fixed K

Maximum likelihood estimation:

Expectation-Maximization (EM) algorithm.
General purpose optimizers.
Hybrid approaches.

Bayesian estimation:

Markov chain Monte Carlo (MCMC) sampling with data
augmentation by adding Si , i = 1, . . . , n.
General purpose Gibbs samplers can be used, e.g., JAGS
available in R through package rjags (Plummer, 2019).



Determining the number of clusters

No generally accepted solution available.

Suggested methods include:

Maximum likelihood estimation:

Information criteria: AIC, BIC, ICL.
Likelihood ratio test with distribution under the null
determined using sampling methods.

Bayesian estimation:

Marginal likelihoods.
Posterior of the number of clusters in the data partitions,
in particular for overfitting mixtures with sparsity inducing
priors.
Transdimensional sampling schemes with a prior on K .



Clustering kernel

Components corresponding to clusters:
Use parametric distributions for the components and thus also for
the clusters.

Multivariate continuous data.
Multivariate categorical data.
Multivariate mixed data.
Multivariate data with regression structure.

Combining components to clusters:
Use mixture distributions as cluster distributions.

Two-step procedures.
Simultaneous estimation using constraints or informative
priors.



Multivariate continuous data

The standard model is a mixture of multivariate Gaussians.

The model-based clustering model is given by

yi ∼
K∑

k=1

ηkφ(yi |µk ,Σk ).

For K clusters and d-dimensional observations yi the number of
estimated parameters corresponds to

K · (d + d(d + 1)/2) + K − 1.
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Parsimonity is achieved based on the decomposition of the
variance-covariance matrix into

Volume λ
Shape A
Orientation D

given by

Σk = λk Dk Ak D>
k .

14 different models emerge by imposing different constraints on
the variance-covariance matrices within or across clusters.

Available packages in R, e.g.,

mclust (Scrucca et al., 2016),
mixture (Pocuca et al., 2021),
Rmixmod (Lebret et al., 2015).
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Alternative approaches to achieve parsimonity are mixtures of
factor analyzers.

E.g., package pgmm (McNicholas et al., 2019) in R.

If the cluster shapes are not symmetric and light tailed, alternative
cluster kernels are:

t-distributions (e.g., package teigen; Andrews et al. 2018).
Skewed and / or heavy tailed distributions: e.g.,

mixsmsn (Prates et al., 2013),
MixSAL (Franczak et al., 2018).



Multivariate categorical data

Often also referred to as latent class analysis.

Clusters induce a dependency between variables, while variables
are independent within clusters.
⇒ Local independency assumption.

The model-based clustering model is given by

yi ∼
K∑

k=1

ηk

 d∏
j=1

Multinomial(yij |πj
k )


for d-dimensional observations.

Available packages in R: e.g.,

poLCA (Linzer and Lewis, 2011)
Rmixmod (Lebret et al., 2015)



Multivariate data with regression structure

Often also referred to as clusterwise regression.

The model-based clustering model is given by

yi |xi ∼
K∑

k=1

ηk f (yi |µk (xi), φk ).

Different regression models possible:

Generalized linear models.
Generalized linear mixed-effects models.

Available packages in R: e.g.,

flexmix (Leisch, 2004; Grün and Leisch, 2008)
mixtools (Benaglia et al., 2009)
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Combining components to clusters

Two-step procedures:
1 Fit a mixture model as semi-parametric tool for density

estimation.
2 Combine components of the mixture model to form clusters

based on some criterion.

Available packages in R, e.g.:

mclust uses entropy or connectedness of components as
criterion (Baudry et al., 2010; Scrucca, 2016).
fpc (Hennig, 2020) provides several variants as proposed in
Hennig (2010).

Simultaneous estimation using informative priors in Bayesian
estimation can be used in combination with standard estimation
methods.



Applications of model-based clustering

Modeling unobserved heterogeneity:

Density approximation / semi-parametric modeling.
Continuous versus discrete heterogeneity.

Extensibility:

Any statistical model can be used as cluster-specific model.
Model-specific estimation methods can be re-used.

Challenges:

Selecting the clustering base: variable selection.
Assessing and comparing different clustering solutions.



Summary

Model-based clustering is a versatile method for clustering.

Different variants exist depending on

Clustering kernel.
Estimation approach.

A large number of R packages are available covering different
kinds of models.

For more information see the CRAN Task View: Cluster Analysis &
Finite Mixture Models:
https://CRAN.R-project.org/view=Cluster

https://CRAN.R-project.org/view=Cluster


References

J. L. Andrews, J. R. Wickins, N. M. Boers, and P. D. McNicholas. teigen: An R
package for model-based clustering and classification via the multivariate t
distribution. Journal of Statistical Software, 83(7):1–32, 2018. doi:
10.18637/jss.v083.i07.

J.-P. Baudry, A. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining mixture
components for clustering. Journal of Computational and Graphical
Statistics, 2(19):332–353, 2010. doi: 10.1198/jcgs.2010.08111.

T. Benaglia, D. Chauveau, D. R. Hunter, and D. Young. mixtools: An R
package for analyzing finite mixture models. Journal of Statistical
Software, 32(6):1–29, 2009. doi: 10.18637/jss.v032.i06.

B. C. Franczak, R. P. Browne, P. D. McNicholas, and K. L. Burak. MixSAL:
Mixtures of Multivariate Shifted Asymmetric Laplace (SAL)
Distributions, 2018. URL
https://CRAN.R-project.org/package=MixSAL. R package version
1.0.

https://CRAN.R-project.org/package=MixSAL


References / 2

B. Grün and F. Leisch. FlexMix version 2: Finite mixtures with concomitant
variables and varying and constant parameters. Journal of Statistical
Software, 28(4):1–35, 2008. doi: 10.18637/jss.v028.i04.

C. Hennig. Methods for merging Gaussian mixture components. Advances in
Data Analysis and Classification, 4(1):3–34, 2010. doi:
10.1007/s11634-010-0058-3.

C. Hennig. fpc: Flexible Procedures for Clustering, 2020. URL
https://CRAN.R-project.org/package=fpc. R package version
2.2-9.

R. Lebret, S. Iovleff, F. Langrognet, C. Biernacki, G. Celeux, and G. Govaert.
Rmixmod: The R package of the model-based unsupervised, supervised,
and semi-supervised classification Mixmod library. Journal of Statistical
Software, 67(6):1–29, 2015. doi: 10.18637/jss.v067.i06.

F. Leisch. FlexMix: A general framework for finite mixture models and latent
class regression in R. Journal of Statistical Software, 11(8):1–18, 2004.
doi: 10.18637/jss.v011.i08.

https://CRAN.R-project.org/package=fpc


References / 3

D. A. Linzer and J. B. Lewis. poLCA: An R package for polytomous variable
latent class analysis. Journal of Statistical Software, 42(10):1–29, 2011.
doi: 10.18637/jss.v042.i10.

P. D. McNicholas, A. ElSherbiny, A. F. McDaid, and T. B. Murphy. pgmm:
Parsimonious Gaussian Mixture Models, 2019. URL
https://CRAN.R-project.org/package=pgmm. R package version
1.2.4.

M. Plummer. rjags: Bayesian Graphical Models Using MCMC, 2019. URL
https://CRAN.R-project.org/package=rjags. R package version
4-10.

N. Pocuca, R. P. Browne, and P. D. McNicholas. mixture: Mixture Models for
Clustering and Classification, 2021. URL
https://CRAN.R-project.org/package=mixture. R package version
2.0.4.

M. O. Prates, C. R. B. Cabral, and V. H. Lachos. mixsmsn: Fitting finite mixture
of scale mixture of skew-normal distributions. Journal of Statistical
Software, 54(12):1–20, 2013. doi: 10.18637/jss.v054.i12.

https://CRAN.R-project.org/package=pgmm
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=mixture


References / 4

L. Scrucca. Identifying connected components in Gaussian finite mixture
models for clustering. Computational Statistics & Data Analysis, 93:
5–17, 2016. doi: 10.1016/j.csda.2015.01.006.

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: Clustering,
classification and density estimation using Gaussian finite mixture models.
The R Journal, 8(1):205–233, 2016.


	References

