

INDUSTRIES

A Novel Bayesian Pricing Model for Commercial Lines Hierarchical expected loss-cost, frequency-severity decomposition with coupled covariance, running in Production

Jonathan Sedar - Director Oreum Industries

oreum.io

Oreum OU © 2021

Who am I?

Bayesian Data Science Consultant

Fifteen years consulting & learning from data:

- Design & deliver statistical models
- Build & lead data science teams
- Advise senior leaders & investors

Focus: Insurtech, Fintech, Startups, VC / PE

Location: Remote (Portugal < Korea < USA < UK)

Previous IDSC / R in Insurance attendee 2015, 2016, 2017, 2018

Overview

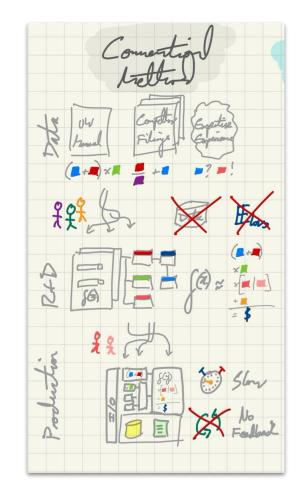
- 1. Problem the need for better pricing
- 2. Solution a novel Bayesian inferential model using leading software
- 3. Delivery embedding a new approach into an old industry

Key technical point:

```
modern Bayesian statistical software +
domain knowledge +
proper engineering
= vital competitive advantage
```

The Problem

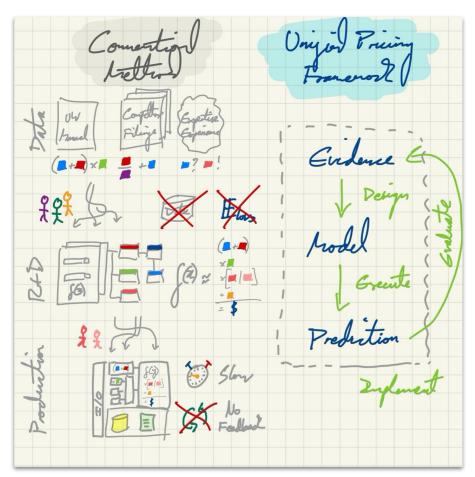
- 1. Tackling commercial lines with potential for extreme but infrequent losses
- 2. Admitted business, filed rates, can only tweak the edges
- 3. Pre-existing conventional model(s) based on loss ratios, unrelated to actual expected loss
- 4. In-house data often very relevant albeit limited, some values missing, affects the potential modelling approach
- 5. Historical development process conventional and convoluted --->



The Problem (general)

5. Historical development process conventional and convoluted --->

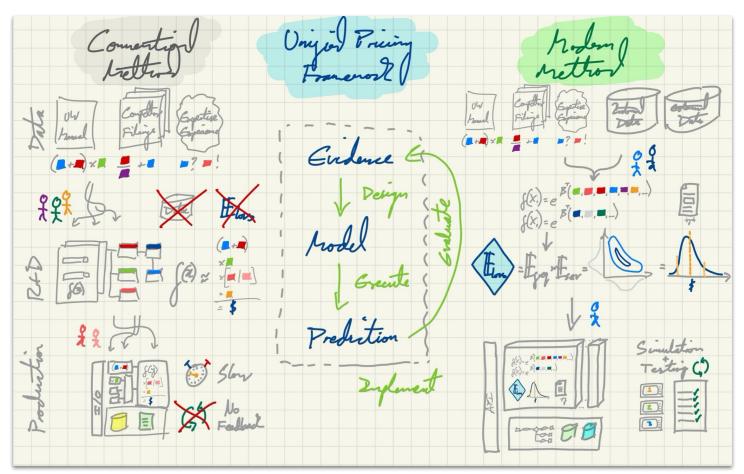
- 'Model' is a piecemeal recipe to construct a premium, not actually a model of loss
- Recipe inherited from unknown actuary(ies), weak provenance, can exist in multiple conflicting implementations
- Non-testable, non-reproducible, broken workflow / feedback loop
- Poor knowledge sharing, too many cooks
- Implementation slow and limited by old statistics *and* old technology



The Solution (general)

Model workflow

- Modern tech
- Holistic design
- Testable
- Reproducible
- Productionisable
- Multidisciplinary experts



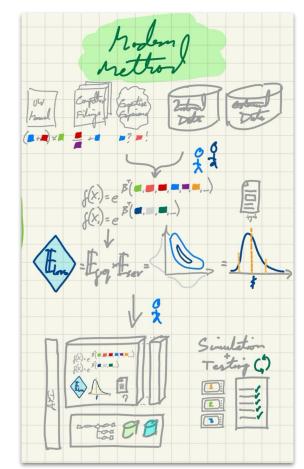
Solution is enabled by modern PPLs!

Bayesian Inference:

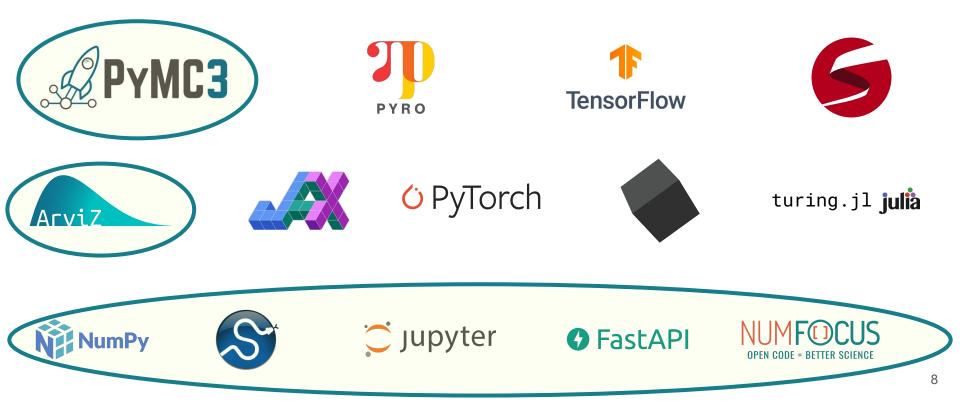
- 1. Specify a hypothesis of the data-generating process
- 2. Represent as a coherent model of parameterised probability distributions; incorporate prior knowledge with uncertainty; evidence with data; iterate
- 3. Evaluate model explanatory power with simulation and summary statistics

Probabilistic Programming Languages (PPLs):

- Coherent statistical & software framework
- Enable entire Bayesian Modelling Workflow
- Ready to integrate with Production



Solution is enabled by modern PPLs and frameworks



Modelling Approach

1. Design:

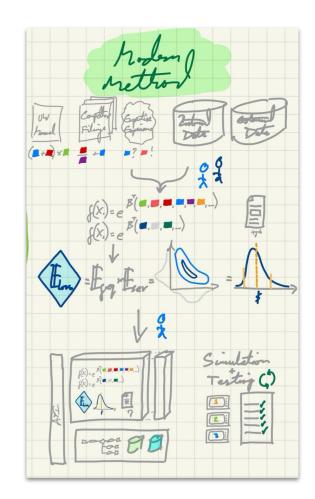
- a. Expected loss for each policy via freq-sev decomposition
- b. Choose distributional forms for the likelihoods and priors
- c. Parameterise to the available features

2. Implement & Evaluate:

- a. Coherent pymc3 model and workflow
- b. Deal with zero-inflation, missing values, hierarchical priors (mixed random effects), covariance, recency-bias
- c. Refine and narrow initial uncertainty evidenced on the data to make predictions with quantified uncertainty

3. Productionise:

- a. Modular design, API embedding, extensibility
- b. Offline training, online prediction (numpy)



Model Design: Expected Loss Cost as Freq x Sev

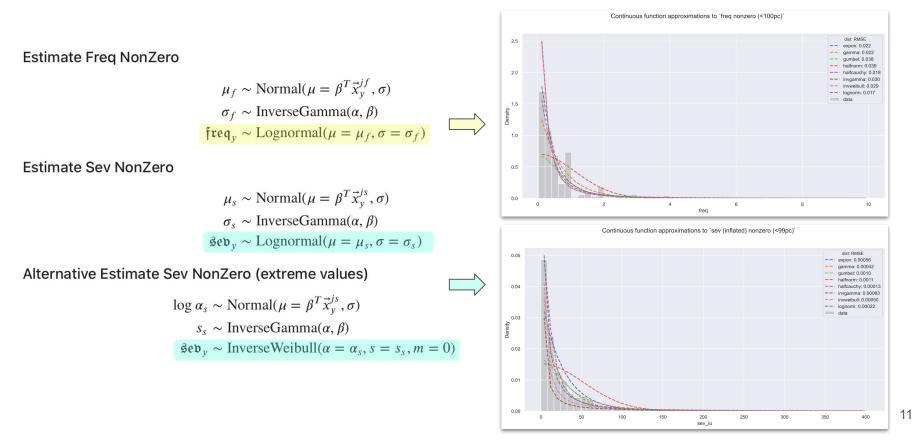
$$\begin{bmatrix} \overline{z}_{e,\gamma} & \gamma_{\gamma} \end{bmatrix}^{n} & \mathcal{ELC1} : \mathcal{E}_{spectral legenst} is gragery decomposition with complet containing, his indicated results and late patitions for zero injections of the product of the pr$$

$$freq_{i} = \frac{n_claims_{i}}{\$_exposure_{i}}, \text{ for } i \in n_policies$$

$$sev_{i} = \frac{\$_loss_{i}}{n_claims_{i}}, \text{ for } i \in n_policies$$

$$E_loss_{i} = freq_{i} * sev_{i} = \frac{\$_loss_{i}}{\$_exposure_{i}}$$

Model Design: Choose Reasonable Marginals



Model Design: Estimate Covariance via Copula

1. Create covariance:

 $L \sim \text{LKJCholesky(2)}, R \sim \text{LKJCorr(2)}$ $\sigma \sim \text{InverseGamma}(\alpha, \beta)$ $\Sigma \sim LL^{T} = diag(\sigma) * R * diag(\sigma)$

2. Transform marginals via their CDFs:

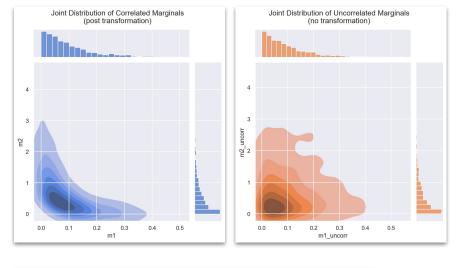
 $FreqU_y = freq_y \Phi(Freq_y)$ SevU_y = $sev_y \Phi(Sev_y)$

3. Transform the uniform marginals via a Normal InvCDF:

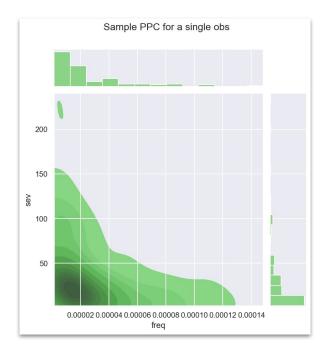
 $(\mathbf{FreqN}, \mathbf{SevN})_y = MvNormal(\mu = 0, \sigma = 1)\Phi^{-1}([\mathbf{FreqU}_y, \mathbf{SevU}_y])$

4. Evaluate likelihood at the copula:

 $copula \sim MvNormal(\mu = 0, \Sigma, observed = (FreqN, SevN)_v$

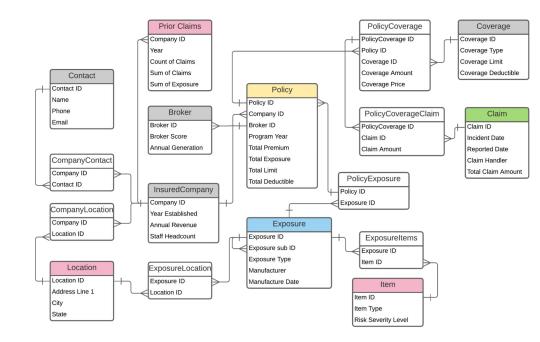


Model Design: Result: Probabilistic Predictions of Eloss



$$freq_{i} = \frac{n_claims_{i}}{\$_exposure_{i}}, \text{ for } i \in n_policies$$
$$sev_{i} = \frac{\$_loss_{i}}{n_claims_{i}}, \text{ for } i \in n_policies$$
$$E_loss_{i} = freq_{i} * sev_{i} = \frac{\$_loss_{i}}{\$_exposure_{i}}$$

Model Design: Parameterise to Available Features



Example Entity Relationship Diagram (ERD)

Create features for the model:

- Data Engineering / Databasing
- Data Processing
- Feature Engineering
- Exploratory Data Analysis (EDA)
- Redesign data capture systems and question sets
- Incorporate external data

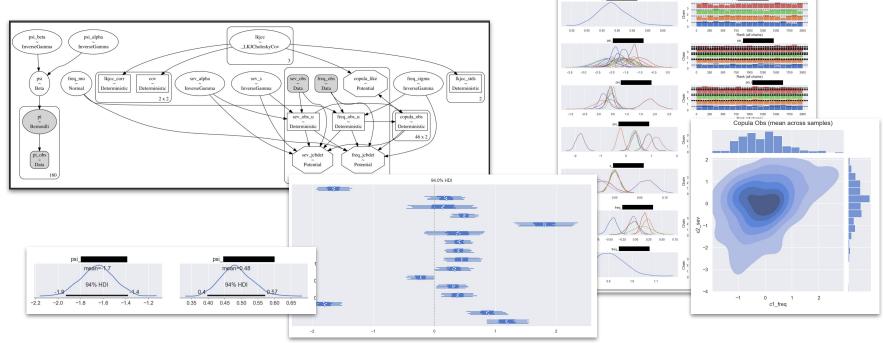
Implement: Implementation Challenges & Solutions

Zero-Inflation (freq and sev, independently)	Introduce 3rd component Psi ("is claim") and parameterise this too $\log \frac{\psi_f}{1 - \psi_f} = \text{Normal}(\mu = \beta^T \vec{x}_i^{j\psi}, \sigma)$ $\pi = \text{Bernoulli}(p = \psi_f, \text{observed} = \mathbf{Pi})$
Missing Values (systematic or human error)	Use pymc3 auto-imputation of missing values with hierarchical priors for stability ## missing value fts (note hierarchy on missing vals not beta coefs) x_freq_b_mv = pm.Normal('freq_b_mv', mu=0., sigma=1., dims='nm_j_freq_mv') x_freq_mv_mu = pm.Normal('x_freq_mv_mu', mu=0., sigma=1., dims='nm_j_freq_mv') x_freq_mv = pm.Normal('x_freq_mv_mu, sigma=1., dims='nm_j_freq_mv') beerved=xma_freq_mv, dims=['obs_id', 'nm_j_freq_mv']
High Cardinality (locations, goods types, etc)	Use hierarchical priors ## hierarchical intercept on location, (mixed random effects) or psi_loc_mu = pm.Normal('psi_loc_mu', mu=-1., sigma=1) (mixed random effects) or carefully aggregate factors ## hierarchical intercept on location, psi_loc_mu = pm.Normal('psi_loc_mu', mu=-1., sigma=1) psi_loc_sigma = pm.InverseGamma('psi_loc_sigma', alpha=101., beta=100.) # centered parameterisation (non-centered yields lower ESS) psi_loc = pm.Normal(]'psi_loc', mu=psi_loc_mu, sigma=psi_loc_sigma, dims='nm_loc']
Claims Inflation Drift (historical guesswork accumulates errors)	Introduce an in-model parameter for recency bias, to de-weight older program years $p_{i_dist} = pm.Bernoulli.dist(p=psi)$ $p_{i_dist.logp(y_pi) * x_psi_recency_bias}$
Consistent data transformation (Production same as R&D)	Use patsy formula transforms with custom mods for factors, and use self-contained reusable Python package for data curation, eda, model framework & handling: oreum_core

Implement: Iteratively Build & Evaluate Model Architecture

Examples from a Bayesian Workflow:

• Plate Notation, Posterior Traceplots, HDI, Forestplots, etc



Implement: Evaluate Model Performance

Example Posterior Predictive Perf, measures from a Bayesian Workflow:

• Binary: ROC, Prec Red, F-Score, Accuracy

RMSE ranges freq

min @ nct

--- mean @

1.04

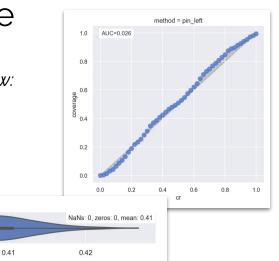
1.02

1.00

0.98 0.96

0.92

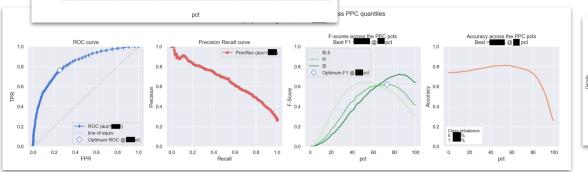
• Continuous: Bayesian R², posterior density, coverage, RMSE, etc

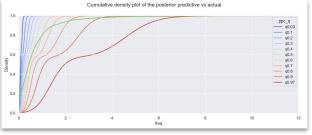


variable = r^2

0.40

0.39

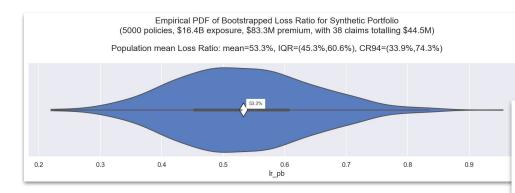


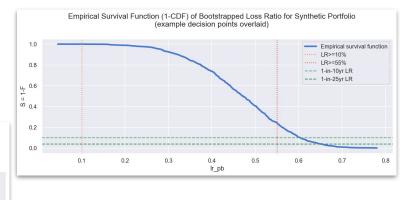


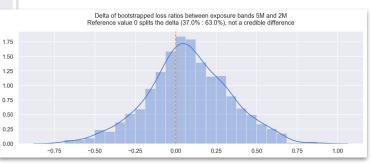
Model Evaluation: Evaluate Holistic / Conventional Measures

Example Holistic / conventional performance measures

- Portfolio loss ratios (bootstrapped)
- Exceedance curve
- 2-sample bootstrap hypothesis testing

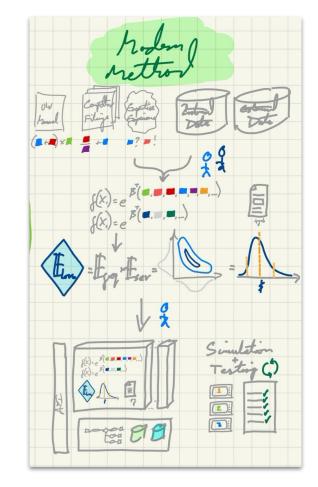






Production Implementation

- 1. Offline training, online prediction
- 2. Modular construction: data transformers, vectorised model forward-pass, PPC calcs
- 3. Online stage re-written in numpy for practicality
- 4. Integrate into a hosted API service (e.g. FastAPI)
- 5. Monitor model performance and undertake regular structured evaluation, ensure model delivers value



Recap

- 1. Problem the need for better pricing
- 2. Solution a novel Bayesian inferential model using leading software
- 3. Delivery embedding a new approach into an old industry

Key technical point:

modern Bayesian statistical software + domain knowledge + proper engineering = vital competitive advantage

or eum

INDUSTRIES