
Approximate Bayesian
Computation in Insurance

Patrick J. Laub and Pierre-Olivier Goffard

Motivation
Have a random number of claims and the claim
sizes .

We aggregate them somehow, like:

aggregate claims:
maximum claims:
stop-loss: .

Question: Given a sample of the summaries, what is
the which explains them?

E.g. a reinsurance contract

N ∼ p (⋅ ;θ)N freq

U ,… ,U ∼1 N f (⋅ ;θ)U sev

X = U∑i=1
N

i

X = max Ui=1
N

i

X = (U −∑i=1
N

i c)+

X ,… ,X1 n

θ = (θ ,θ)freq sev

Likelihoods

For simple rv's we know their likelihood (normal, exponential,
gamma, etc.).

When simple rv's are combined, the resulting thing rarely has a
tractable likelihood.

X ,X1 2 ∼
i.i.d.

f (⋅) ⇒X X +1 X ∼ Intractable likelihood!2

Usually it's still possible to simulate these things...

Approximate Bayesian
Computation

Example: Flip a coin a few times and get ;
what is

(x ,x ,x) =1 2 3 (H, T, H)
π(θ∣x)?

Getting an exact match of the
data is hard...

Accept fake data that's close to
observed data

The 'approximate' part of ABC

Does it work in theory?

Rubio and Johansen (2013), A simple approach to maximum intractable likelihood estimation,

Electronic Journal of Statistics.

Proposition: Say we have continuous data , and our prior
 has bounded support.

If for some we have

then for each

xobs

π(θ)

ϵ > 0

π(z ∣
(z,θ):D(z,x)<ϵ,θ∈Θobs

sup θ) < ∞

θ ∈ Θ

π (θ ∣
ϵ→0
lim ϵ x) =obs π(θ ∣ x) .obs

We sample the approximate / ABC posterior

but we care about the true posterior .

π (θ ∣ϵ x) ∝obs π(θ) × P(∥x −obs x ∥ ≤∗ ϵ where x ∼∗ θ),

π(θ ∣ x)obs

Mixed data

Get

when

π (θ ∣
ϵ→0
lim ϵ x) =obs π(θ ∣ x) obs

We filled in some of the blanks for mixed data.
Our data was mostly continuous data but had an atom at 0.

D(z,x) =obs {D (z ,x)+ +
obs+

∞
if #Zeros(z) = #Zeros(x),obs

otherwise.

Does it work in practice?
In other words, when does it break & how slow is it?

Dependent example

J. Garrido, C. Genest, and J. Schulz (2016), Generalized linear models for dependent frequency and
severity of insurance claims, IME.

frequency ,

severity , defined as
summation summary

N ∼ Poisson(λ = 4)

U ∣i N ∼ DepExp(β = 2, δ = 0.2) U ∣i N ∼ Exp(β × e),δN

X = U∑i=1
N

i

ABC posteriors based on 50 's and on 250 's given uniform priors.X X

λ β δ

import approxbayescomp as abc

Load data to fit
obsData = ...

Frequency-Loss Model
freq = "poisson"
sev = "frequency dependent exponential"
psi = abc.Psi("sum") # Aggregation process

Fit the model to the data using ABC
prior = abc.IndependentUniformPrior([(0, 10), (0, 20), (-1, 1)])
model = abc.Model(freq, sev, psi, prior)
fit = abc.smc(numIters, popSize, obsData, model)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

pip install approxbayescomp

Time-varying example
Claims form a Poisson process point with arrival rate .
The observations are .
Frequencies are and sizes are .

λ(t) = a+ b[1 + sin(2πct)]
X =s U∑i=Ns−1

Ns
i

CPoisson(a = 1, b = 5, c =)50
1 U ∼i Lognormal(μ = 0,σ = 0.5)

From the same the data is randomθ

a b c μ σ

Claims form a Poisson process point with arrival rate .
The observations are .
Frequencies are and sizes are .
ABC posteriors based on 50 's and on 250 's with uniform priors.

λ(t) = a+ b[1 + sin(2πct)]
X =s U∑i=Ns−1

Ns
i

CPoisson(a = 1, b = 5, c =)50
1 U ∼i Lognormal(μ = 0,σ = 0.5)

X X

Time-varying example

Bivariate example
Two lines of business with dependence in the claim frequencies.
Say .
Claim frequencies and for , .
Claim sizes for each line are and .
ABC posteriors based on 50 's and on 250 's with uniform priors.

Λ ∼i Lognormal(μ ≡ 0,σ = 0.2)
N ∼i Poisson(Λ w)i 1 M ∼i Poisson(Λ w)i 2 w =1 15 w =2 5

Exp(m =1 10) Exp(m =2 40)
X X

σ w1 w2 m1 m2

Streftaris and Worton (2008), Efficient and accurate approximate Bayesian inference with an
application to insurance data, Computational Statistics & Data Analysis

ABC turns a statistics problem
into a programming problem

... to be used as a last resort

Compiled code
(use numba)

Interpreters & compilers

C.f. Lin Clark (2017), A crash course in JIT compilers

https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/

def sample_geometric_exponential_sums(T, p, μ):
 X = np.zeros(T)

 N = rnd.geometric(p, size=T)
 U = rnd.exponential(μ, size=N.sum())

 i = 0
 for t in range(T):
 X[t] = U[i:i+N[t]].sum()
 i += N[t]

 return X

1
2
3
4
5
6
7
8
9
10
11
12

Interpreted version

from numba import njit

@njit()
def sample_geometric_exponential_sums(T, p, μ):
 X = np.zeros(T)

 N = rnd.geometric(p, size=T)
 U = rnd.exponential(μ, size=N.sum())

 i = 0
 for t in range(T):
 X[t] = U[i:i+N[t]].sum()
 i += N[t]

 return X

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

First run is compiling (500 ms), but after we are
down from 2.7 ms to 164 μs (16x speedup)

Compiled by numba

Original code: 1.7 s
Basic profiling with snakeviz: 5.5 ms, 310x speedup

+ Vectorisation/preallocation with numpy: 2.7 ms, 630x speedup
+ Compilation with numba: 164 μs, 10,000x speedup

And potentially:

+ Parallel over 80 cores: say another 50x improvement,
so overall 50,000x speedup.

Take-home messages

- What is ABC?

- ABC turns a statistics problem into a programming problem

- pip install approxbayescomp

