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Motivation
Have a random number of claims  and the claim
sizes .

 
We aggregate them somehow, like:

aggregate claims: 
maximum claims: 
stop-loss: .

 
Question: Given a sample  of the summaries, what is
the  which explains them?

 
E.g. a reinsurance contract

N ∼ p ( ⋅ ;θ )N freq

U ,… ,U ∼1 N f ( ⋅ ;θ )U sev

X = U∑i=1
N

i

X = max Ui=1
N

i

X = ( U −∑i=1
N

i c)+

X ,… ,X1 n

θ = (θ ,θ )freq sev



Likelihoods
 

For simple rv's we know their likelihood (normal, exponential,
gamma, etc.).
 
When simple rv's are combined, the resulting thing rarely has a
tractable likelihood.

X ,X1 2 ∼
i.i.d.

f ( ⋅ ) ⇒X X +1 X ∼  Intractable likelihood!2

Usually it's still possible to simulate these things...



Approximate Bayesian
Computation

Example: Flip a coin a few times and get ;
what is

(x ,x ,x ) =1 2 3 (H, T, H)
π(θ∣x)?



Getting an exact match of the
data is hard...



Accept fake data that's close to
observed data



The 'approximate' part of ABC



Does it work in theory?

Rubio and Johansen (2013), A simple approach to maximum intractable likelihood estimation,

Electronic Journal of Statistics.

Proposition: Say we have continuous data  , and our prior
 has bounded support.

If for some  we have

then for each  

xobs

π(θ)

ϵ > 0

π(z ∣
(z,θ):D(z,x )<ϵ,θ∈Θobs

sup θ) < ∞

θ ∈ Θ

π (θ  ∣
ϵ→0
lim ϵ x ) =obs  π(θ ∣ x ) .obs

We sample the approximate / ABC posterior

but we care about the true posterior  .

π (θ ∣ϵ x ) ∝obs π(θ) × P(∥x −obs x ∥ ≤∗ ϵ where x ∼∗ θ),

π(θ ∣ x )obs



Mixed data

Get 

when

π (θ  ∣
ϵ→0
lim ϵ x ) =obs  π(θ ∣ x ) obs

We filled in some of the blanks for mixed data.
Our data was mostly continuous data but had an atom at 0.

D(z,x ) =obs {D (z ,x )+ +
obs+

∞
if #Zeros(z) = #Zeros(x ),obs

otherwise.



Does it work in practice?
In other words, when does it break & how slow is it?



Dependent example

J. Garrido, C. Genest, and J. Schulz (2016), Generalized linear models for dependent frequency and
severity of insurance claims, IME.

frequency ,

severity , defined as 
summation summary 

 

N ∼ Poisson(λ = 4)

U ∣i N ∼ DepExp(β = 2, δ = 0.2) U ∣i N ∼ Exp(β × e ),δN

X = U∑i=1
N

i

ABC posteriors based on 50 's and on 250 's given uniform priors.X X

λ β δ



import approxbayescomp as abc
 
# Load data to fit
obsData = ...
 
# Frequency-Loss Model
freq = "poisson"
sev = "frequency dependent exponential"
psi = abc.Psi("sum") # Aggregation process
 
# Fit the model to the data using ABC
prior = abc.IndependentUniformPrior([(0, 10), (0, 20), (-1, 1)])
model = abc.Model(freq, sev, psi, prior)
fit = abc.smc(numIters, popSize, obsData, model)
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pip install approxbayescomp



Time-varying example
Claims form a Poisson process point with arrival rate .
The observations are .
Frequencies are   and sizes are .

 

λ(t) = a+ b[1 + sin(2πct)] 
X =s U∑i=Ns−1

Ns
i

CPoisson(a = 1, b = 5, c = )50
1 U ∼i Lognormal(μ = 0,σ = 0.5)



From the same  the data is randomθ



a b c μ σ

Claims form a Poisson process point with arrival rate .
The observations are .
Frequencies are   and sizes are .
ABC posteriors based on 50 's and on 250 's with uniform priors.

λ(t) = a+ b[1 + sin(2πct)] 
X =s U∑i=Ns−1

Ns
i

CPoisson(a = 1, b = 5, c = )50
1 U ∼i Lognormal(μ = 0,σ = 0.5)

X X

Time-varying example



Bivariate example
Two lines of business with dependence in the claim frequencies.
Say .
Claim frequencies  and  for , .
Claim sizes for each line are  and .
ABC posteriors based on 50 's and on 250 's with uniform priors.

 

Λ ∼i Lognormal(μ ≡ 0,σ = 0.2)
N ∼i Poisson(Λ w )i 1 M ∼i Poisson(Λ w )i 2 w =1 15 w =2 5

Exp(m =1 10) Exp(m =2 40)
X X

σ w1 w2 m1 m2

Streftaris and Worton (2008), Efficient and accurate approximate Bayesian inference with an
application to insurance data, Computational Statistics & Data Analysis



ABC turns a statistics problem
into a programming problem

... to be used as a last resort



Compiled code
(use numba)



Interpreters & compilers

C.f. Lin Clark (2017), A crash course in JIT compilers

https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/


def sample_geometric_exponential_sums(T, p, μ):
  X = np.zeros(T) 
 
  N = rnd.geometric(p, size=T)
  U = rnd.exponential(μ, size=N.sum())
 
  i = 0
  for t in range(T):
    X[t] = U[i:i+N[t]].sum()
    i += N[t]
  
  return X
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Interpreted version



from numba import njit
 
@njit()
def sample_geometric_exponential_sums(T, p, μ):
  X = np.zeros(T) 
 
  N = rnd.geometric(p, size=T)
  U = rnd.exponential(μ, size=N.sum())
 
  i = 0
  for t in range(T):
    X[t] = U[i:i+N[t]].sum()
    i += N[t]
  
  return X
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First run is compiling (500 ms), but after we are
down from 2.7 ms to 164 μs (16x speedup)

Compiled by numba



Original code: 1.7 s
Basic profiling with snakeviz:  5.5 ms, 310x speedup

+ Vectorisation/preallocation with numpy: 2.7 ms, 630x speedup
+ Compilation with numba: 164 μs, 10,000x speedup

 
And potentially:
 

+ Parallel over 80 cores: say another 50x improvement,
so overall 50,000x speedup.



Take-home messages  

- What is ABC?
 
- ABC turns a statistics problem into a programming problem
 
- pip install approxbayescomp


