Extremile regression

Gilles Stupfler (ENSAI & CREST)

Joint work with Abdelaati Daouia (Toulouse School of Economics) and Irène Gijbels (KU Leuven)

Insurance Data Science Conference, 18th June 2021

Any quantile is a median, any extremile is a mean

Focus of this presentation

Study a class of L^2 —based risk measures which are comonotonically additive and expectations over the whole of the distribution.

Assume that F is continuous and strictly increasing. Then the quantile q_{τ} of F satisfies

$$[F(q_{\tau})]^{\log(1/2)/\log(\tau)} = \tau^{\log(1/2)/\log(\tau)} = \exp(\log(1/2)) = 1/2.$$

So q_{τ} is the median of Z_{τ} , where Z_{τ} has c.d.f. $z \mapsto [F(z)]^{\log(1/2)/\log(\tau)}$.

Let
$$r(\tau) = \log(1/2)/\log(\tau)$$
 and $K_{\tau}(t) = t^{r(\tau)}$.

Definition (Extremile)

The extremile of order τ of Y is the expectation of $Z_{\tau} = Z_{\tau}(Y)$:

$$\xi_{\tau} = \mathbb{E}(Z_{\tau})$$
, with Z_{τ} having c.d.f. $K_{\tau} \circ F$.

Alternative formulations of extremiles

When $r(\tau)$ is a positive integer, we then have

$$\xi_{ au} = \mathbb{E}(\mathsf{max}(Y_1,\ldots,Y_{r(au)}))$$

where the Y_i are independent copies of Y.

Extremiles are coherent and comonotonically additive. They are not elicitable, but their formulation as a minimizer suggests they can be backtested with a natural methodology (work in progress).

For regression: If $J_{\tau}(t) = K'_{\tau}(t)$, it holds that

$$\xi_{\tau} = \arg\min_{\theta \in \mathbb{R}} \mathbb{E}(J_{\tau}(F(Y))[(Y - \theta)^2 - Y^2]).$$

So just like expectiles, extremiles are defined through an asymmetric least squares criterion, but with a different weighting scheme.

Extremile regression

Let $(Y,X) \in \mathbb{R} \times \mathbb{R}^d$ be a response-covariate pair. Assume that the conditional c.d.f. $F(\cdot|x)$ is continuous. The τ th extremile of this c.d.f. defines the τ th regression extremile of Y given X = x.

Definition (Regression extremile)

The τ th regression extremile of Y given X = x is

$$\xi_{\tau}(x) = \arg\min_{\theta \in \mathbb{R}} \mathbb{E}(J_{\tau}(F(Y|x))[(Y-\theta)^2 - Y^2] \,|\, X = x).$$

This definition requires $\mathbb{E}(|Y||X=x) < \infty$ to make sense.

Regression extremiles keep the interpretation of extremiles (expectation of maxima...) but applied to the conditional distribution instead.

Assume that a random sample (Y_i, X_i) , $1 \le i \le n$ is available.

Estimation - extreme case

Focus now on the case $\tau = \tau_n \uparrow 1$ as $n \to \infty$. An extrapolation method is needed! Assume that

$$\forall y > 0, \lim_{t \to \infty} \frac{q_{1-(ty)^{-1}}(x)}{q_{1-t^{-1}}(x)} = y^{\gamma(x)}.$$

The conditional distribution has a Pareto-type tail with index $\gamma(x)$.

In this case, if $\mathbb{E}(\max(-Y,0) \mid X=x) < \infty$ and $0 < \gamma(x) < 1$ then

$$rac{\xi_{ au}(x)}{q_{ au}(x)}
ightarrow \mathcal{G}(\gamma(x)) \;\; ext{as } au \uparrow 1,$$

where $\mathcal{G}(s) = \Gamma(1-s)\{\log 2\}^s$ and Γ is Euler's Gamma function.

This means that

$$\widehat{\xi}_{\tau_n}(x) = \mathcal{G}(\widehat{\gamma}(x))\widehat{q}_{\tau_n}(x)$$

is an estimator of the extreme regression extremile $\xi_{\tau_n}(x)$.

Our choices? Focus on d = 1 for simplicity. We set first

$$\widehat{F}_{\mathrm{NW}}(y|x) = \sum_{i=1}^{n} \mathbb{1}\{Y_i \leq y\} L\left(\frac{x - X_i}{h_n}\right) \left/ \sum_{i=1}^{n} L\left(\frac{x - X_i}{h_n}\right)\right.$$

Here L is a p.d.f. on \mathbb{R} . We then define a kernel estimator of $\widehat{\gamma}(x)$ as

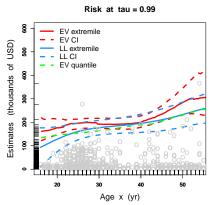
$$\widehat{\gamma}(x) = \frac{\sum_{j=1}^{J} \left[\log \widehat{F}_{\mathrm{NW}}^{-1}(1 - t_j(1 - a_n)|x) - \log \widehat{F}_{\mathrm{NW}}^{-1}(a_n|x) \right]}{\sum_{j=1}^{J} \log(1/t_j)}$$

where $1 = t_1 > t_2 > \cdots > t_J > 0$ are J weights. This is a kernel version of the (generalized) Pickands estimator. The estimator of $q_{\tau_n}(x)$ is then

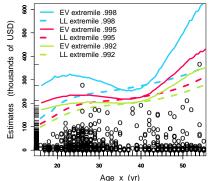
$$\widehat{q}_{\tau_n}(x) = \left(\frac{1-\tau_n}{1-a_n}\right)^{-\widehat{\gamma}(x)} \widehat{F}_{\mathrm{NW}}^{-1}(a_n|x).$$

Here $a_n \uparrow 1$ with $nh_n(1-a_n) \to \infty$: it is "extreme, but not too much".

For $t_j = 1/j$ the variance V_J is minimal for J = 9 with $V_9 \approx 1.25$.



Higher risks at tau = .992, .995, .998



Data set dataOhlsson (R package insuranceData) on n = 670 motorcycle-related claims recorded by the Swedish insurer Wasa.

Left: Estimates $\widehat{\xi}_{.99}(x)$ and $\widetilde{\xi}_{LL,.99}(x)$ (local linear estimator), corresponding 95% asymptotic confidence intervals, and $\widehat{q}_{.99}(x)$.

Right: Estimates $\widehat{\xi}_{\tau_n}(x)$ and $\widetilde{\xi}_{\mathrm{LL},\tau_n}(x)$ for $\tau_n = .992, .995, .998$.

Discussion

- An extremile above the mean is the mean of a distribution whose weight has been shifted to the right in a simple way.
- Extremiles are L^2 quantities, have various interpretations and closed forms, and do not rely solely on the tail event.
- They can be estimated at central and extreme levels using local linear estimation and semiparametric extrapolation.

Ongoing work and research perspectives? Forecast evaluation, dependent data (marginal/dynamic estimation)...

For (much!) more, see the following two papers:

Daouia, A., Gijbels, I., Stupfler, G. (2019). Extremiles: A new perspective on asymmetric least squares, JASA 114(527): 1366–1381.

Daouia, A., Gijbels, I., Stupfler, G. (2021). Extremile regression, JASA, to appear.