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Linear Models and Penalization
OLS: No penalization,

β̂ = argmin
β

1
2 ||y − Xβ||2

Ridge: L2 penalization,

β̂ = argmin
β

1
2 ||y − Xβ||2 + λ

p∑
j=1

β2
j

LASSO: L1 penalization,

β̂ = argmin
β

1
2 ||y − Xβ||2 + λ

p∑
j=1
|βj |

LAAD: Adjusted L1 penalization,

β̂ = argmin
β

1
2 ||y − Xβ||2 + r

p∑
j=1

log(1 + |βj |)
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Literature Review and Contributions

Our contributions can be summarized as follows:

We focus on the use of maximum a posterior (MAP) estimate with
LAAD penalty and its convergence analysis under mild conditions.
It is also shown that the proposed penalty can be effectively used in an
actuarial application, insurance claim reserving with aggregate loss
triangle.
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Analytic Solution for Univariate Case

To better understand the characteristic of a model with LAAD penalty, let
us consider a simple example when p = 1 and ||X || = 1. In this case, it is
sufficient to solve the following:

θ̂j = argmin
θj

1
2(zj − θj)2 + r log(1 + |θj |), (1)

where z = X ′y .
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Analytic Solution for Univariate Case

Theorem 1

Let us set `(θ|r , z) = 1
2(z − θ)2 + r log(1 + |θ|). Then the corresponding

minimizer will be given as θ̂ = θ∗ · 1{|z|≥z∗(r)∨r}, where

θ∗ = 1
2

[
z + sgn(z)

(√
(|z | − 1)2 + 4|z | − 4r − 1

)]
,

and z∗(r) is the unique solution of

∆(z |r) = 1
2(θ∗)2 − θ∗z + r log(1 + |θ∗|) = 0.
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Estimate Behavior for Different Penalties
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Issues in Penalization

Shrinkage: whether the method distorts the estimated parameter
value(s),
Variable selection: whether the method allows us to rule out some
insignificant variables from the model

Shrinkage Variable Selection
OLS NO NO
Ridge More if |β| ↑ NO
LASSO Constant YES
LAAD More if |β| ↓ YES
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Coordinate Descent Algorithm for the Multivariate Case

Since an analytic solution is obtained in the case of univariate penalized
least squares, one can implement coordinate descent algorithm in the
multivariate case,

which starts with an initial set of estimates,
and then successively optimize along each coordinate or blocks of
coordinates.
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Convergence of Coordinate Descent Algorithm

The following theorem provides us sufficient conditions that our
optimization problem converges with coordinate descent algorithm.

Theorem 2

If ||Xj || = 1 for all j = 1, . . . , p and r ≤ 1, then the solution from coordinate
descent algorithm with function l : Rp → R converges to β̂ where

β̂ = argmin
β

1
2 ||y − Xβ||2 + r

p∑
j=1

log(1 + |βj |).
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Loss Development with Aggregate Triangular Claims Data

DL 1 DL 2 DL 3 DL 4 DL 5 DL 6 DL 7 DL 8 DL 9 DL 10

AY 1 Y1,1 Y1,2 Y1,3 Y1,4 Y1,5 Y1,6 Y1,7 Y1,8 Y1,9 Y1,10
AY 2 Y2,1 Y2,2 Y2,3 Y2,4 Y2,5 Y2,6 Y2,7 Y2,8 Y2,9
AY 3 Y3,1 Y3,2 Y3,3 Y3,4 Y3,5 Y3,6 Y3,7 Y3,8
AY 4 Y4,1 Y4,2 Y4,3 Y4,4 Y4,5 Y4,6 Y4,7
AY 5 Y5,1 Y5,2 Y5,3 Y5,4 Y5,5 Y5,6
AY 6 Y6,1 Y6,2 Y6,3 Y6,4 Y6,5
AY 7 Y7,1 Y7,2 Y7,3 Y7,4
AY 8 Y8,1 Y8,2 Y8,3
AY 9 Y9,1 Y9,2
AY 10 Y10,1

Given dataset can also be expressed as D1:10 = {Yij : 1 ≤ i ≤ 10 and
1 ≤ j ≤ min(10, 11− i)}.
One needs to predict ultimate claim (lower triangle) described as
DI+k = {Y (n)

ij : 1 + k ≤ i ≤ I and j = I + 1 + k − i , n = 1, 2}.
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Cross-Classified Model for Loss Development Prediction

One can suggest the following model specification:

Ci ,j+1 := log Yi ,j+1
Yi ,j

and Ci ,j+1 ∼ N
(
ηj+1, σ

2
)
,

where ηj+1 means the incremental development at j + 1th year.
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Model Specifications

Unconstrained model - a model which minimizes the following for
each line of business:

I∑
i=1

I−i∑
j=1

(Ci ,j+1 − ηj+1)2 ,

LASSO constrained model - a model which minimizes the following
for each line of business with LASSO penalty:

I∑
i=1

I−i∑
j=1

(Ci ,j+1 − ηj+1)2 + λ

J−1∑
j=2
|ηj+1|

 ,
LAAD constrained model - a model which minimizes the following
for each line of business with LAAD penalty:

I∑
i=1

I−i∑
j=1

(Ci ,j+1 − ηj+1)2 + r

J−1∑
j=2

log(1 + |ηj+1|)

 .
Himchan Jeong, Hyunwoong Chang, Emiliano Valdez A regularization approach for loss reserving 13 / 17



Summary of Estimated Incremental Development Factors

General Liability Other Casualty

Unconstrained LASSO LAAD Unconstrained LASSO LAAD

exp (η2) 2.2022 2.3203 2.4066 1.2975 1.3064 1.3570
exp (η3) 1.5681 1.5514 1.5408 1.1052 1.1016 1.0876
exp (η4) 1.3108 1.2956 1.2846 1.0792 1.0754 1.0606
exp (η5) 1.1723 1.1574 1.1458 1.0352 1.0312 1.0157
exp (η6) 1.1569 1.1407 1.1281 1.0298 1.0254 1.0085
exp (η7) 1.0465 1.0299 1.0164 0.9959 1.0000 1.0000
exp (η8) 1.0512 1.0317 1.0163 1.0024 1.0000 1.0000
exp (η9) 1.0106 1.0000 1.0000 0.9929 0.9998 1.0000
exp (η10) 1.0147 1.0000 1.0000 0.9589 0.9685 1.0000

Note that η2 is not penalized for both LASSO and LAAD models to
avoid under-reserving due to shrinkage from regularization.
A natural pattern of incremental LDFs is only observed with LAAD
model, η̂2 ≥ η̂3 ≥ · · · ≥ η̂L = 0 = · · · = η̂10.
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Model Comparison of Validation Measures

It is also possible to evaluate the performance of prediction based on usual
validation measures such as root mean squared error (RMSE) and mean
absolute error (MAE) defined as follows:

RMSE =:

√√√√1
9

10∑
i=2

(Ŷ (n)
i ,12−i − Y (n)

i ,12−i )2,

MAE =: 19

10∑
i=2
|Ŷ (n)

i ,12−i − Y (n)
i ,12−i |.

General Liability Other Casualty

Unconstrained LASSO LAAD Unconstrained LASSO LAAD

RMSE 45447.55 39250.54 36573.14 14075.55 12506.03 9919.94
MAE 28395.27 24200.97 23778.28 10738.65 9478.27 7685.04
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Concluding Remarks

In this paper, we introduce LAAD penalty derived from the use of Laplace
hyperprior for the λ in Bayesian LASSO which has some good properties
such as

variable selection with reversion to the true regression coefficients,
analytic solution for the univariate case,
and an optimization algorithm for the multivariate case which
converges under modest condition via coordinate descent.
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Concluding Remarks

We also explore a possible use of LAAD penalty in actuarial application,
especially calibration of loss development model and tail factor selection.

According to the results of the empirical analysis, one can see that use
of LAAD penalty ended up with reasonable loss development pattern
while the other methods deviate from that pattern.
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