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Disclaimer

Disclaimer:
The following slides present a simplified version of the algorithm. The
notation is not consistent with the paper and is only meant to give an

intuition of the algorithm.
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Gradient Boosting Machines

Gradient Boosting Machines
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Gradient Boosting Machines

The goal is to find parameter function

θ(x) : Rp → R

that minimizes some loss function

L ((yi , θ(xi ))ni=1)

on the training data set
(yi , xi )

n
i=1
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Gradient Boosting Machines

Algorithm: Gradient Boosting Machine

Initialize θ(0)(x) ∈ R
For k = 1, . . . , κ

Calculate the point-wise negative derivatives

gi = −∂L (yi , θ(xi ))

∂θ(xi )

∣∣∣∣
θ=θ(k−1)

Fit a regression tree h to the gradients

γ(k) = arg min
γ

n∑
i=1

(gi − h(xi ; γ))2

Update parameter function

θ(k)(x) = θ(k−1)(x) + ε · h(x ; γ(k))
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Early stopping

Gradient Boosting Machines are prone to overfitting.
To avoid this, we can use early stopping, i.e. adjust hyper-parameter κ.
Split data set into

Training data set: (yi , xi )
m
i=1

Validation data set: (yi , xi )
n
i=m+1

Run the algorithm for k = 1, 2, . . . and choose

κ = arg min
k

L

((
yi , θ

(k)(xi )
)n
i=m+1

)
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Early stopping (example)

Sample (yi , xi )
n
i=1 from:

Xi ∼ N (0, I ), Yi ∼ N (µi (xi ), σ
2)

with parameter function

µi (xi ) = xi1 + 10 · 1{xi2>0}, σ2 = 1

Create training data set (yi , xi )
n
2
i=1 and validation data set (yi , xi )

n
i= n

2
+1.

Run GBM with early stopping, n = 10, 000, ε = 0.1.
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Early stopping (example)

0 10 20 30 40 50 60 70 80 90

κ = 50

Number of trees

L
os

s

Training
Validation

Figure: Early stopping for a GBM
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Early stopping (example)
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Figure: Parameter estimates, κ = 0
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Early stopping (example)
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Figure: Parameter estimates, κ = 10
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Early stopping (example)
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Figure: Parameter estimates, κ = 50
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Cyclical Gradient Boosting Machines

Cyclical Gradient Boosting Machines
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Cyclical Gradient Boosting Machines

The goal is to find parameter function

θ(x) : Rp → Rd

for d ≥ 1 that minimizes some loss function

L ((yi , θ(xi ))ni=1)

on the training data set
(yi , xi )

n
i=1
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Cyclical Gradient Boosting Machines

Algorithm: Cyclical Gradient Boosting Machine

Initialize θ(0)(x) = θ̂MLE

For k = 1, . . . , κ
For j = 1, 2, . . . , d

Calculate the point-wise negative partial derivatives

gij = −∂L (yi , θ(xi ))
∂θj(xi )

∣∣∣∣
θ=θ(k−1)

Fit a regression tree to the gradients

γ
(k)
j = argmin

γ

n∑
i=1

(gij − h(xi ; γ))
2

Update parameter function

θ
(k)
j (x) = θ

(k−1)
j (x) + ε · h(x ; γ(k)

j )
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Cyclical Gradient Boosting Machines

Using the univariate early stopping scheme can be problematic!

The complexity of the parameter function can differ over the different
dimensions.

This might lead to dimension-wise over- or underfitting.
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Cyclical Gradient Boosting Machines

Strategy: individual stopping times for each dimension.
For every boosting step k and every dimension j , calculate the loss
contribution ∆Ljk . Then, choose

κj = arg min
k
{k : ∆Ljk > 0}
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Simulated example

Sample (yi , xi )
n
i=1 from:

Xi ∼ N (0, I ), Yi ∼ N (µi (xi ), σ(xi )
2)

with parameter function

µi (xi ) = xi1 + 10 · 1{xi2>0}

log σ(xi ) = 3− 2 · 1{xi1>−0.2}

Create training data set (yi , xi )
n
2
i=1 and validation data set (yi , xi )

n
i= n

2
+1.

Run CGBM with (individual) early stopping, n = 100, 000, ε = 0.1.
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Simulated example
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Figure: Early stopping for a CGBM using individual stopping times
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Simulated example
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Figure: Parameter estimates
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Real data example

The freMTPL2 data set contains 678, 013 observations of French motor
third-party liability claims, of which 34, 060 have at least one claim.
The following covariates are available:

Feature Description Type
Brand Brand of car Categorical (7)
Gas Gas used by car Categorical (2)

Density Population density in car-owners city Continuous
Area Area of car Categorical
Region Region of car Categorical

BonusMalus Bonus/Malus level of driver Continuous
Power Power level of car Ordinal (12)

Vehicle age Age of the car in years Continuous
Driver age Age of driver in years Continuous

Table: Features used in the real data example.
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Real data example

Assume

Ni |Xi ∼ NegBin (wiµ(Xi ),wiθ(Xi ))

Yi |Xi ,Ni ∼ Gamma (Nim(Xi ), φ(Xi )/Ni )

where, for contract i ,

Ni is the number of claims

wi is the duration of the contract

Yi is the total claim amount

Xi is the vector of covariates

using a mean-dispersion parametrization for the both distribution such that

E [Ni |Xi ] = wiµ(Xi ), Var [Ni |Xi ] = wiµ(Xi )

(
1 +

µ(Xi )

θ(Xi )

)
E [Yi |Ni ,Xi ] = Nim(Xi ), Var [Yi |Ni ,Xi ] = Nim(Xi )

2φ(Xi )
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Real data example

The CGBM produces a slightly lower loss for both data sets.

Intercept GBM CGBM

Claim counts
Train 0.21 0.20 0.20
Test 0.24 0.24 0.20

Claim amounts
Train 1.25 1.25 1.20
Test 1.24 1.24 1.20

Table: Average negative log-likelihood for the freMTPL2 data set.
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Real data example
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Figure: Concentration curves for the freMTPL2 data set.
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Summary

Cyclical Gradient Boosting extends Gradient Boosting to the
multi-parametric setting.

A hyperparameter tuning procedure is proposed.

The algorithm can easily be extended to similar algorithms such as
XGBoost.
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Thank you

Thank you for your attention!
Questions?
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