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And their Issues 

DeepHit (Lee et al. 2018) - still the benchmark to beat
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Multi-Task Approach

Pioneered by Yu et al. (2011). If we have tools to handle binary 
predictions, we can extend this to reformulate common 
survival problems


Instead of directly modelling survival, consider a simple model 
for zj = ℙ(T ≥ tj |x)

Time
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Multi-Task Approach

Pioneered by Yu et al. (2011). If we have tools to handle binary 
predictions, we can extend this to reformulate common 
survival problems


Instead of directly modelling survival, consider a simple model 
for 


But now construct a series of dependent regression tasks 
instead

zj = ℙ(T ≥ tj |x)

Time
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Conditioned Kaplan-Meier
Setup - II

We need to consider censored instances


Consider a weighting scheme creating a vector (or multi-task) 
estimation problem

[1,1,1,1,0,…,0]τ̃ = 4
c = 0

τ̃ = 4
c = 1

[1,1,1,1,1…,1]

[1,1,1,1,0…,0]
[1,1,1,1,1,…,1]

Yi, j = {0 if τi < j
1 otherwise

∀i, j = 0,1,…, K

Wi, j = {0 if ci < j
1 otherwise

∀i, j = 0,1,…, K
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Conditioned Kaplan-Meier
Setup - II

We need to consider censored instances


Consider a weighting scheme creating a vector (or multi-task) 
estimation problem


Which yields the likelihood estimator(s)

[1,1,1,1,0,…,0]τ̃ = 4
c = 0

τ̃ = 4
c = 1

[1,1,1,1,1…,1]

[1,1,1,1,0…,0]
[1,1,1,1,1,…,1]

̂z1 = arg max
z1

n

∏
i=1

zwi,1yi,1
1 (1 − z1)wi,1(1−yi,1) ̂zj = arg max

zj

n

∏
i=1

zwi, j yi, j
j (1 − zj)wi, j(1−yi, j)…

Yi, j = {0 if τi > j
1 otherwise

∀i, j = 0,1,…, K

Wi, j = {0 if ci > j
1 otherwise

∀i, j = 0,1,…, K
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Conditioned Kaplan-Meier
Setup - III

Also need some restrictions (as in the original Kaplan-Meier 
estimation)


Here we simply impose directly:

S(tj) = 1 − ℙ[τ = tj |τ ≥ tj]S(tj−1) =
j

∏
l=1

[1 − h(tl)]

̂zj = {
̂q(t1)  if j = 1
̂zj−1 ̂q(tj) if j > 1
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Deep Kaplan-Meier
Individual Predictions

This allows to construct conditional predictions, without 
assumptions such as proportional hazards


Here: a simple example where  and censoring is 
random


τi = 𝒢(x⊤
i β,1)
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Deep Kaplan-Meier
Averaged Predictions

But what about (average) calibration? 


Here: The average prediction

𝔼[Y | m̂(X)] = m̂(X)
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Deep Kaplan-Meier
Random Censoring

Optimisation is straightforward, unlike in the Cox-Family 


Further, we can show that in expectation, the estimation 
converges to the Kaplan-Meier estimation


The estimator also converges if event-time is only conditionally 
independent of the censoring time

https://github.com/phi-ra
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Deep Kaplan-Meier
Dependent Censoring

Consider the case where we have a positive dependence, that 
is  


Then  

ℙ[ci] = 1 − min {2 × ( x⊤
i β

max(x⊤
i β) ),1}

𝔼[zj] = 𝔼[ ̂zj] +
1

𝔼[w]
Cov(w, y)
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In Summary

Imposing structure into Neural Networks allows to:


• Have calibrated outputs


• Safeguards on the estimation allow usage even on 
small datasets


Nonlinearities and conditional independence enable more 
realistic estimations


Many extensions possible, on Quantiles, with included 
censoring model, etc..
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