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ERM risk classes impacted by climate-related risks

Source: International Actuarial Association, Climate Risk Task Force (2020), Importance of Climate-Related Risks for Actuaries



How actuarial work is exposed to climate-related change

Source: International Actuarial Association, Climate Risk Task Force (2020), Importance of Climate-Related Risks for Actuaries



Why actuaries should care?

• Reviewing the underlying models used in their work for their continued suitability in light of climate-related risks in 

the short and long terms – such a review may need to consider a system-wide approach to modelling climate-related 

risks

• Creating insurance products and pricing structures that align policyholders’ financial interests with behaviour that 

promotes innovative solutions or climate-adaptive outcomes

• Aligning insurance product design with the needs of consumers, corporates, vulnerable groups, regulators, 

governments, etc.

• Encouraging pension funds, insurers and other clients to be active investors who support the management of 

climate-related risks in the companies in which they invest
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Why actuaries should care? (cont’d)

• Sharing their expertise in modelling the financial impact of extreme climate-related events (e.g., catastrophe 

modelling)

• Developing investment strategies and products that will help address problems associated with climate-related risks

• Advising various types of organizations, including governments and other policymakers, on climate-related risk 

initiatives that encourage improved governance and risk management of this risk

• Contributing to the public debate and review of relevant government programs, public policy issues (e.g., 

supervision) and climate-related disaster planning, and informing building codes and land-use policies

• Disclosing in their work, in unambiguous terms, the impact that climate change has regarding the physical, transition 

and legal/reputation risks, according to frameworks (e.g., Task Force on Climate-Related Financial Disclosure [TCFD])
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Substantiating the claim

• Groundbreaking analysis links over 5 million deaths annually to abnormally hot and cold temperatures

− Source: Zhao, Q., Guo, Y., Ye, T., Gasparrini, A., Tong, S., Overcenco, A., … & Kinney, P. L. (2021). Global, regional, and national 
burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. The 
Lancet Planetary Health, 5(7), e415–e425

• Research on Hurricane Maria in Puerto Rico found 1,650 excess deaths in the six months following the 
storm, far exceeding the officially reported toll of 64

− Source: Santos-Burgoa, C., Sandberg, J., Suárez, E., Goldman, A., Garcia-Meza, A., Pérez, C. M., ... & Zeger, S. L. (2018). Differential 
and persistent risk of excess mortality from Hurricane Maria in Puerto Rico: A time-series analysis. American Journal of Public 
Health, 108(9), 1202–1208

• Healthcare delivery disruption due to climate change

− Source; Shah, A., Shapiro, J., & Hayes, S. (2022). The Impact of Climate Change on Our Health and Health Systems. The 
Commonwealth Fund

• Despite the rich empirical evidence, actuarial models still lack a practical, scalable framework to 
incorporate climate effects into pricing
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Source: Santos-Burgoa, C., Sandberg, J., Suárez, E., Goldman, A., Garcia-Meza, A., Pérez, C. M., ... & Zeger, S. L. (2018). Differential and persistent risk of excess 
mortality from Hurricane Maria in Puerto Rico: A time-series analysis. American Journal of Public Health, 108(9), 1202–1208



Types of mortality risk
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Level underlying mortality for a particular population dffers from that assumed

Volatility mortality experience will differ from that assumed due to there being a finite number of lives in the population 
considered

Catastrophe extreme version of volatility risk, i.e., risk of large losses due to some significant event increasing mortality rates beyond 
simple random volatility

Trend mortality rates will change over time at a rate different to that assumend

Mortality risk is the risk that a portfolio will suffer from mortality being heavier than expected

Source: International Actuarial Association (2004). A Global Framework for Insurer Solvency Assessment: Report of the Insurer Solvency Assessment Working Party
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Data theme Example raw fields Why GBMs handle it well

Demographics & family history
Age, gender (legal & identified), postcode-
level socioeconomic indices, parental 
longevity

Mix of categorical + ordinal; GBMs capture 
non-linear age effects, regional interactions

Medical records & labs ICD-10 diagnoses, prescription history, 
cholesterol, HbA1c, blood pressure

Lots of sparse codes + continuous labs; tree 
splits isolate rare but high-risk combos

Wearable / lifestyle Daily step count, resting heart-rate trends, 
sleep efficiency, nicotine sensor

Highly granular, seasonally patterned; GBMs 
aggregate without formal time‐series 
modelling

Behavioural / credit-like Driving-telematics score, payment 
punctuality, online questionnaire honesty flag Irregular, skewed; GBMs robust to outliers

Genomic polygenic risk scores (opt-in) CAD-GRS, cancer-GRS percentiles Weak marginal but strong interaction 
effects—GBMs pick these up

Personal data

• All data must pass privacy, consent and anti-discrimination rules

• Public-domain data sources include WHO Mortality Database, CDC WONDER, etc.



Climate-Risk variables

Data theme Example raw fields How GBMs exploit them

Extreme-heat exposure
• Annual count of “wet-bulb > 26 °C days” in 

applicant’s home 1 km grid (ERA5 / Copernicus)
• 5-yr trend in summer night-time minima

Non-linear splits capture threshold effects (“mortality 
jumps once > 10 very hot nights/yr”)

Wildfire smoke & air-quality
• Mean PM₂.₅ concentration last 12 months
• % of days with satellite-detected smoke plume 

(NOAA HMS)

Combines continuous (µg/m³) & sparse binary plume 
flags; GBM finds their joint impact with age/COPD

Flood & storm surge risk
• Parcel-level FEMA Flood-Factor score
• Count of mandatory evacuations within 5 km in 

past decade

Spatial categorical features interact with socio-
economic indices (e.g., high-risk + low car ownership)

Vector-borne disease climate 
suitability

• Annual “days suitable for Aedes aegypti”
• Tick-borne disease suitability index

GBM handles regional seasonality without explicit 
time-series modelling

Heat-related occupational exposure 
(if employer data available)

• % of work hours logged outdoors in > 30 °C
• Presence of employer cooling-plan flag

Tree splits isolate high-risk occupation × climate 
interactions

Forward-looking scenario deltas
• Δ in 20-yr projected extreme-heat days under 

SSP2-4.5 (CMIP6 downscaling)
• Δ wildfire probability 2030 vs 2020

Feeding scenario deltas lets GBM learn “future 
exposure” weightings alongside current

• Public-domain data sources include ERAS, NOAA NCEI, NASA POWER, local meteorological stations, etc.



ICD-10 codes that may be associated with climate variables

• Cardiovascular and Respiratory Diseases (ICD-10: I00–I99, J00–J99)

− Heatwaves can increase mortality from cardiovascular events and respiratory distress, especially in vulnerable populations
− Cold weather is also linked to increased deaths from heart attacks, strokes, and respiratory infections
− Air pollution can exacerbate asthma, COPD and heart disease

• Infectious and Parasitic Diseases (ICD-10: A00–B99)

− Climate variables like temperature, humidity, and precipitation influence the spread of vector-borne diseases (e.g., malaria)
− Waterborne diseases can surge following heavy rainfall or flooding events

• External Causes of Mortality (ICD-10: V01–Y98)

− floods, storms, heatwaves, wildfires
− Seasonal patterns may influence accidents (e.g., icy roads in winter increasing vehicle-related deaths)

• Mental and Behavioural Disorders (ICD-10: F00–F99)

− Some studies link seasonal affective disorder and suicide rates to temperature and sunlight exposure

• Neoplasms (ICD-10: C00–D48)

− While less direct, UV radiation (linked to climate and geography) is a known risk factor for skin cancers
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Toy data for demonstration purposes

• personal attributes
− basic data → random deviates from uniform distributions
− hypertension, diabetes, smoker probabilities → logistic functions and simulated 

binomial probabilities
− daily steps, resting hours → random deviates from a Gaussian distribution, with 

means as functions of age, smoking indicator, hypertension

• climate-related features
− heat days, smoke days → random deviates from Poisson distributions
− chronic pm25, flood, wildfire, vector disease → random deviates from Gaussian 

distributions
− projected heat delta → random deviates from uniform distribution

• ICD-10 indicators
− arbitrary factors of heat days and cold days, combined with Bernoulli distributions 

to generate diagnosis indicators

• logit death
− linear combination of all factors, with arbitrary coefficients
− two-way interaction with high blood pressure and heat days
− light label-flip noise to boost non-linearity
− light miscoding noise for each ICD-10 toi account for false diagnoses
− modest Gaussian noise for continuous variables 
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Sample use of logistic functions: hypertension & diabetes

• Calibrated so as to

− produce a low baseline probability at age =  40 and BMI =  25
− adds ~6% to the log-odds per decade over 40, reflecting that hypertension accelerates with age
− adds ~8% to the log-odds per 5 BMI units above 25
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• Calibrated so as to

− recognise than diabetes is rarer than hypertension at baseline; thus, lower intercept
− acknowledge that BMI is the dominant variable; +5 BMI lifts log-odds by 25%
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Why use GBMs?

• Tabular data with complex relationships

− GBMs are suitable on structured datasets with mixed data types and non-linear interactions

• Moderate-sized datasets

− GBMs are data-efficient and work well with thousands of rows

• Handling of missing data and categorical values

− LightGBM and XGBoost can handle missing values natively
− CatBoost handles categorical data without encoding

• GBMs frequently win data science competitions (e.g., Kaggle) due to their flexibility and ensemble nature

• GBMs require minimum Python coding 
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From to R to Python
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Caveat Emptor

• The challenge has shifted from coding to understanding the impact of the parameters in the output!

• Fortunately, scikit-learn.org provides fairly detailed documentation

− ditto for other libraries, such as xgboost and lightgbm
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Results
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Metrics
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Accuracy: % of total predictions that were correct

Precision: When the model says "positive," how often is it right?

Recall: Of all actual positives, how many did the model find?

F1 Score: Weighted average between precision and recall

ROC AUC: Ability to distinguish between classes (higher = better)

PR AUC: Quality of model when dealing with imbalanced data (higher = better)



How do models stack up?
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Gradient Boosting

 Accuracy (𝟎. 𝟗𝟖𝟓): Almost perfect
 Precision & Recall (≈ 𝟎. 𝟗𝟕 − 𝟎. 𝟗𝟗): High ability to correctly detect positives
 F1 (𝟎. 𝟗𝟕𝟖): Balanced performance
 ROC AUC (𝟎. 𝟖𝟒𝟗): Good class discrimination
 PR AUC (𝟎. 𝟎𝟖𝟑): Very low, raises red flags for imbalance

XGBoost

 Accuracy (𝟎. 𝟕𝟒𝟕): Noticeably lower
 Precision (𝟎. 𝟗𝟖𝟏): Very confident in its positives
 Recall (𝟎. 𝟕𝟒𝟕): Misses many true positives
 F1 (𝟎. 𝟖𝟒𝟏): Decent, but hurt by low recall
 ROC AUC (𝟎. 𝟖𝟒𝟒): Acceptable
 PR AUC (𝟎. 𝟎𝟖𝟎): Very low, raises red flags for imbalance

LightGBM

 Accuracy (𝟎. 𝟗𝟖𝟓): Almost perfect
 Precision & Recall (≈ 𝟎. 𝟗𝟕 − 𝟎. 𝟗𝟗): Matches Gradient Boosting
 F1 (𝟎. 𝟗𝟕𝟖): Top-tier
 ROC AUC (𝟎. 𝟖𝟓𝟎): Slightly best
 PR AUC (𝟎. 𝟎𝟖𝟔): Still very low, but slightly better than others

CatBoost

 Accuracy (𝟎. 𝟕𝟗𝟗): Better than XGBoost but well below GBM/LightGBM
 Precision (𝟎. 𝟗𝟕𝟗): High confidence
 Recall (𝟎. 𝟕𝟗𝟗): Misses positives
 F1 (𝟎. 𝟖𝟕𝟓): Acceptable
 ROC AUC (𝟎. 𝟕𝟕𝟖): Lower class separation
 PR AUC (𝟎. 𝟎𝟔𝟒): Lowest, again points to class imbalance



Plus emptoris caveat

• Class imbalance

− makes accuracy misleading (if 99% are survivals, predicting survival gives 99% accuracy but zero usefulness)
− all models have a low PR AUC score, which is normal due to a highly imbalanced data set
− may resample (e.g., Synthetic Minority Over-Sampling Technique [SMOTE]) or adjust thresholds

• Interpretability

− GBMs are not very transparent
− may use Shapley Additive Explanations (SHAP) to learn “why did the model make this prediction”
− SHAP explains prediction clearly and fairly, and work especially well with GBMs—explainability is critical in insurance!

• Computational resources

− LightGBM is optimised for large data sets, making it more efficient than other GBM algorithms
− if the model is to be used in real-time or resource-limited environments, LightGBM is lightweight and deployable
− scikit-learn GBMs are not optimised for speed, early stopping must be manually implemented, and there is no handling of 

missing values (pre-imputation must be done by the user)

• Model tuning

− Hyperparameters should be fine-tuned with cross-validation
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May go for LightGBM as a starting model, but ...

• Address class imbalance

• Use cross-validation

− split data set into 𝑘-sized folds
− use each fold as the validation set, and the remaining 𝑘 − 1 folds as the training set
− train and evaluate the model 𝑘 times, and average the performance across all folds

• Fine-tune parameters

− adjust settings that control how the model learns, in order to improve its performance (e.g., no. of boosting rounds [trees], how 
much each tree corrects the previous one, maximum depth of each tree, etc.)

• Use explainability tools, like SHAP

Climate-Enhanced Pricing 33



Common pain points and potential fixes
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Pain point Reality check Practical fix

Interpretability Raw GBM trees aren’t transparent to clinicians or 
regulators

SHAP value plots, partial-dependence curves, monotonic constraints, or a 
post-hoc logistic “proxy” model may satisfy scrutiny

Calibration Boosters can be over-confident, especially with rare 
outcomes

scikit-learn calibration guide explains how to use built-in calibration layers 
(e.g., CalibratedClassifierCV)

Censoring & time horizon A plain GBM treats mortality as a binary label; life 
actuaries care about time to event

Use survival GBMs: LightGBM’s "objective": "survival", XGBoost’s 
"survival:cox", scikit-survival’s GradientBoostingSurvivalAnalysis, or a 
Poisson-GBM on person-time intervals

Regulatory fairness Boosting can inadvertently encode socio-economic or 
racial bias Constrain or exclude protected features; run fairness dashboards

“All models tie” Occurs when data are too easy, class imbalance 
unaddressed, or metrics use a single threshold

Re-balance classes, tune hyper-parameters, pick model-specific thresholds, 
or use more challenging non-linear signal
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Take-aways

• Extreme temperatures, storms, and chronic environmental stressors significantly impact mortality—often 

underreported and underestimated

• Mortality impacts from climate events often go unaccounted in standard actuarial models, necessitating 

richer, more granular data sources and scenario analysis

• Actuaries need decision-making frameworks that combine quantitative rigor with qualitative insights

• Both acute events (e.g., hurricanes) and long-term exposures (e.g., heatwaves, pollution) must be 

modeled to capture the full climate-health burden

• Embedding climate-health projections into actuarial models empowers insurers and policymakers to 

improve risk management, product design, and societal resilience

• By capturing complex, non-linear interactions between demographic, environmental, and exposure 
variables, GBMs help actuaries model mortality impacts more accurately and transparently
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