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Latent variable models in insurance loss prediction

We focus on a specific class of regression models with latent
variables. Examples include mixture models (Jacobs et al. 1991) for
claims severity (Fung et al. 2019), zero-inflated Poisson (ZIP) model
(Lambert 1992) for claims frequency (Yip & Yau 2005) and Tweedie’s
compound Poisson model (Smyth 1989) for pure premium (Gao
2024).

Since multiple regression functions and latent variable are involved in
parametric latent variable regression models, feature engineering,
variable selection (Khalili & Chen 2007), and model selection
(Kasahara & Shimotsu 2015) become particularly challenging.
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A nonparametric method: Additive tree model

We propose additive tree latent variable models and design an
Iteratively Re-weighted Gradient Boosting (IRGB) algorithm to
efficiently calibrate the trees. The IRGB algorithm combines the EM
algorithm with gradient boosting (Friedman 2001).

At each IRGB iteration, only one tree is fitted in a stagewise manner,
with the current fitting taking into account the previously fitted trees.
The model fitting, feature engineering, and variable selection are
performed simultaneously due to the characteristics of recursive
binary splitting trees (Breiman et al. 1983).
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Additive tree latent variable models
A latent variable model 𝑝(𝑦, 𝑧 |𝒙; 𝜃) = 𝑝(𝑦, 𝑧; 𝜃 (𝒙)), where 𝑧 is the
latent variable and 𝜃 is the parameter of the joint density function
depending on the covariate vector 𝒙.

The joint density has a factorization

𝑝(𝑦, 𝑧; 𝜃 (𝒙)) = 𝑝(𝑦 |𝑧; 𝜃1(𝒙))𝑝(𝑧; 𝜃2(𝒙)). (1)

This decomposition of 𝜃1 and 𝜃2 motivates the EM algorithm and also
inspires our proposed IRGB algorithm.

Assume additive regression functions as follows:

𝑔1(𝜃1(𝒙)) = 𝐹 (𝒙) = 𝐹 [0] (𝒙) + 𝑣1

𝑀∑
𝑚=1

𝑓 [𝑚] (𝒙),

𝑔2(𝜃2(𝒙)) = 𝐺 (𝒙) = 𝐺 [0] (𝒙) + 𝑣2

𝑀∑
𝑚=1

𝑔 [𝑚] (𝒙)
(2)
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Iteratively re-weighted gradient boosting algorithm
Algorithm 1 The IRGB algorithm.

1: Data augmentation. Get an augmented complete data with the pos-
sible values of latent variable (𝑦𝑖 , 𝑧∗𝑠, 𝒙𝑖)𝑖=1:𝑛,𝑠=1:𝑆 .

2: Initialization. Set �̂� [0] (𝒙𝑖), �̂� [0] (𝒙𝑖), 𝑖 = 1, . . . , 𝑛.
3: for 𝑚 = 1 to 𝑀 do
4: Weight update. Calculate the conditional PMF of the la-

tent variable �̂� [𝑚−1]
𝑖 (𝑧). Set the weight of sample (𝑦𝑖 , 𝑧∗𝑠, 𝒙𝑖) as

�̂� [𝑚−1]
𝑖,𝑠 = �̂� [𝑚−1]

𝑖 (𝑧∗𝑠).
5: Gradient boosting. A gradient descent step is used to find a

tree 𝑓 [𝑚] (𝒙) = ∑𝐿
𝑙=1 �̂�

[𝑚]
𝑙 1

�̂�
[𝑚]
𝑙

(𝒙). Similar for the tree �̂� [𝑚] . Set

�̂� [𝑚] = �̂� [𝑚−1] + 𝑣1 𝑓
[𝑚] and �̂� [𝑚] = �̂� [𝑚−1] + 𝑣2�̂�

[𝑚] .
6: The MLE of covariate-free parameter 𝜙.
7: end for
8: return �̂� = �̂� [𝑀 ] , �̂� = �̂� [𝑀 ] and 𝜙 = 𝜙[𝑀 ] .

We prove the monotonically non-decreasing likelihood in the IRGB algorithm.
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Application 1: zero-inflated Poisson regression
𝑓ZIP (𝑁 |𝒙;𝜆, 𝜋 ) =

{
𝜋 (𝒙) + (1 − 𝜋 (𝒙) )𝑒−𝜆(𝒙) for 𝑁 = 0;

(1 − 𝜋 (𝒙) ) 𝑒
−𝜆(𝒙) 𝜆(𝒙)𝑁

𝑁 ! for 𝑁 ∈ N+ ,

Table 1: The test loss for the three calibration approaches: first approach
(Model BST), second approach (Models BST−𝜆 and BST−𝜆 − 𝜋) and third
approach (Models BST−𝜋 and BST−𝜋 − 𝜆).

models BST BST−𝜆 BST−𝜆 − 𝜋 BST−𝜋 BST−𝜋 − 𝜆
test loss 0.6766 0.7791 0.7035 0.6736 0.6733

Table 2: Comparison of different ZIP models and a Poisson GBDT in terms
of the test loss, the single Poisson loss and the predicted proportion of zeros.

models test loss single Poisson loss zeros %
BST−𝜋 0.6736 0.8057 0.6217

GLM−𝜆 (Yip & Yau 2005) 0.7965 0.8995 0.5949
GLM−𝜆∗ 0.7831 0.8328 0.5821
GLM−𝜋∗ 0.6765 0.8078 0.6157

NULL 0.8256 0.9779 0.6067
GBDT - 0.8229 0.5243
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Application 2: Tweedie’s compound Poisson regression
𝑓𝑌,𝑁 (𝑦, 𝑘 ) = 𝑓𝑌 |𝑁=𝑘 (𝑦) 𝑓𝑁 (𝑘 ) =

{
𝑓𝑃𝑜𝑖 (0; 𝑒𝑖𝜆𝑖 ) for 𝑘 = 0;
𝑓𝑃𝑜𝑖 (𝑘; 𝑒𝑖𝜆𝑖 ) 𝑓𝑔𝑎𝑚 (𝑦; 𝑘𝛼, 𝑘𝜏𝑖/𝑒𝑖 ) for 𝑘 > 0,

Table 3: The test loss for the three calibration approaches.

models BST BST−𝜆 BST−𝜆 − 𝜏 BST−𝜏 BST−𝜏 − 𝜆
test loss 0.6496 0.6509 0.6501 0.6622 0.6502

Table 4: Comparison of the latent variable models (BSTs and GLM) and the
Poisson-gamma models for both claim counts and amounts (BST0, GLM0
and NULL) in terms of test loss on five mutually exclusive subsets of data.

models test loss 1 test loss 2 test loss 3 test loss 4 test loss 5
BST 0.6515 0.6513 0.6526 0.6542 0.6496

BST−𝜆 − 𝜏 0.6506 0.6509 0.6514 0.6537 0.6501
BST−𝜏 − 𝜆 0.6506 0.6516 0.6515 0.6538 0.6502

GLM 0.6538 0.6526 0.6556 0.6577 0.6513
BST0 0.6415 0.6416 0.6437 0.6419 0.6471
GLM0 0.6538 0.6526 0.6558 0.6577 0.6513
NULL 0.6607 0.6597 0.6613 0.6649 0.6607

7 / 8



Thank you!
Q & A
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