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Introduction

• Mortality rates are seasonal — with the highest rates occurring during winter (Marti-Soler
et al. 2014).

• External shocks, such as severe heat waves and epidemics, can lead to deviations from
these expected seasonal patterns — known as excess mortality (Iuliano et al. 2018, Nielsen
et al. 2011).

• Various methodologies have been proposed:

- Distributed Lag (Non-Linear) Models, e.g., Schwartz (2000), Gasparrini et al. (2010)
and Guibert et al. (2024),

- Extreme value analysis, e.g., bivariate POT approach in Li & Tang (2022).

- Machine learning methods, e.g., gradient boosting for the association
temperature-mortality, e.g. Robben et al. (2024).

- Jump processes for pandemics, e.g., Cox et al. (2006), Chen & Cox (2009).

2 / 17



Introduction

• Mortality rates are seasonal — with the highest rates occurring during winter (Marti-Soler
et al. 2014).

• External shocks, such as severe heat waves and epidemics, can lead to deviations from
these expected seasonal patterns — known as excess mortality (Iuliano et al. 2018, Nielsen
et al. 2011).

• Various methodologies have been proposed:

- Distributed Lag (Non-Linear) Models, e.g., Schwartz (2000), Gasparrini et al. (2010)
and Guibert et al. (2024),

- Extreme value analysis, e.g., bivariate POT approach in Li & Tang (2022).

- Machine learning methods, e.g., gradient boosting for the association
temperature-mortality, e.g. Robben et al. (2024).

- Jump processes for pandemics, e.g., Cox et al. (2006), Chen & Cox (2009).

2 / 17



Introduction

• Mortality rates are seasonal — with the highest rates occurring during winter (Marti-Soler
et al. 2014).

• External shocks, such as severe heat waves and epidemics, can lead to deviations from
these expected seasonal patterns — known as excess mortality (Iuliano et al. 2018, Nielsen
et al. 2011).

• Various methodologies have been proposed:

- Distributed Lag (Non-Linear) Models, e.g., Schwartz (2000), Gasparrini et al. (2010)
and Guibert et al. (2024),

- Extreme value analysis, e.g., bivariate POT approach in Li & Tang (2022).

- Machine learning methods, e.g., gradient boosting for the association
temperature-mortality, e.g. Robben et al. (2024).

- Jump processes for pandemics, e.g., Cox et al. (2006), Chen & Cox (2009).

2 / 17



Research goals

1. Introduce a novel weekly mortality modeling framework that integrates a granular age- and
region-specific baseline with a regime-switching model that captures mortality shocks
driven both by environmental and epidemic factors.

2. Use of several data sources to identify environmental and epidemic shocks:
• Daily gridded temperature data from the Copernicus Climate Data Store.
• Epidemic data from the French Sentinelles network (influenza anomalies).
• Hospital admission records from Santé Publique France to capture the COVID-19
excess mortality.

3. Quantify the different sources of uncertainty around the model’s estimates and forecasts,
and analyze in-sample and out-of-sample performance.

4. Short-term mortality forecasting based on temperature (RCP 2.6, RCP 4.5, and RCP 8.5
pathways) and influenza scenarios based on a SIRS model.
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Data sources



Death counts

Eurostat: deaths by week, sex, 5-year age group
and NUTS 2 region from France throughout the
years 2013-2024 (21 regions).

Focus on the age groups 65-69, . . . , 90+.

Seasonal trend:
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Weather data

E-OBS land-only, gridded meteorological data for
Europe from the Copernicus Climate Data Store.

Daily, high-resolution gridded dataset, defined on
a grid with spatial resolution of 0.10◦ (≈ 11 km).

To align with the NUTS 2-level mortality data:
⇒ Construction of population-weighted daily
temperature averages by using gridded population.

To align with the weekly time scale: hot- and
cold-week index (frequency of hot/cold days) and
weekly average of daily temperature anomalies
(severity of hot/cold days).
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Epidemic data: Influenza and COVID-19 hospitalizations

French Sentinelles Network: weekly influenza data from 1300 general practioners.
Santé Publique France: weekly COVID-19 hospitalizations.
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Model specification and calibration



Model specification

We propose a three-state regime-switching model:
• State 0 (Baseline state) : Weekly, region-specific and age-specific baseline mortality.
• State 1 (Environmental shock state) : Deviations due to extreme temperatures.
• State 2 (Respiratory shock state) : Deviations due to influenza and COVID-19.
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Weekly, region- and age-specific baseline mortality model

A weekly, region and age-group-specific
baseline mortality model to capture overall
seasonal trends across all regions.

Incorporate seasonality through Fourier
terms:

D
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,

Fit one Poisson GLM jointly on all regions,
and add a penalty term to obtain smooth

variations in the estimated γx,p = (γ
(r)
x,p)r∈R

across neighbouring regions.
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Modelling mortality deviations from the baseline

Explain observed deviations from the baseline deaths using region-specific environmental and
epidemiological features:

b̂
(r)
x,t := Ê

[
D

(r)
x,t

]
= E

(r)
x,t µ̂

(r)
x,t ,

Death counts are modeled for i = 0, 1, 2 by

D
(r)
x,t | S

(r)
t = i ∼ POI

(
b̂
(r)
x,t · exp

[(
z
(r)
t

)⊤
αi,x

])
,

where

• S
(r)
t is a region- and time-dependent Markov chain.

• Region- and time-dependent covariate vector z
(r)
t , with state- and age-specific αi,x.

Motivation: Extreme temperatures can have a larger impact on people aged 90+ compared to
those aged 65-69.
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Modelling mortality deviations from the baseline

Transition probabilities are given by

pijt

(
z
(r)
t ;β, ur

)
=



exp

((
z
(r)
t

)⊤
βij + Ur

)
1 +

∑
j′∈Ji

exp

((
z
(r)
t

)⊤
βij′ + Ur

) j ̸= 0

1

1 +
∑
j′∈Ji

exp

((
z
(r)
t

)⊤
βij′ + Ur

) j = 0,

Motivation: If very high temperatures are observed at time t, the probability of moving to state
1 should increase. We include a spatial effect to account for regional disparities by including an
ICAR model:

U = (U1, U2, . . . , UR) ∼ N
(
0, [τ · (D −W )]−1

)
,

Calibration: Expectation-Maximization algorithm.
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Case study on 21 French NUTS 2 regions



State-Specific Poisson Model Specifications

State 1: Models impact of heatwave-related shocks:

logE
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State 2: Models mortality shocks from influenza activity and COVID-19 hospitalizations:
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Modelling regime transition probabilities

Assumptions: Transition probabilities are independent of age x and regional variations r are
accounted for using a spatial effect Ur modelled by an ICAR process.

Transition Probabilities:

logit p01t

(
z
(r)
t ; β0, ur

)
= β01,0 + β01,1HIt + Ur

logit p02t

(
z
(r)
t ; β0, ur

)
= β02,0 + β02,1IA

(r)
t,t−1 + β02,2HA

(r)
t,t−1 + Ur

logit p11t

(
z
(r)
t ; β1, ur

)
= β11,0 + β11,1HIt + β11,2HIt−1 + β11,3HIt−2 + Ur

logit p22t

(
z
(r)
t ; β2, ur

)
= β22,0 + β22,1IA

(r)
t,t−1 + β22,2IA

(r)
t−2,t−3

+ β22,3HA
(r)
t,t−1 + β22,4HA

(r)
t−2,t−3 + Ur

Features: Short-term features for transitions to shock states; mid-term lagged features for state
persistence: HI (hot index), IA (influenza anomaly), HA (hospital admissions).
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Results: Parameter estimates in both states
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Results: Parameter estimates in transition probabilities
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Uncertainty in in-sample predictions
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Out-of-sample backtesting - Calibration: 2013 to mid 2022
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Conclusion



Conclusion

Main results

• We proposed a three-state regime-switching weekly mortality model incorportaing both the
impact of temperature and epidemic shocks on mortality.

• We quantified the uncertainty in in- and out-of-sample predictions, and examine how
different temperature and influenza scenarios influence mortality.

• Highest impact for the oldest age group and presence of harvesting effects.

Limitations and extensions

• Public Health Interventions: Adaptation measures like early-warning systems, cooling
centers, and improved healthcare access can mitigate effects.

• Future Research: Extend analysis to morbidity data for better preparedness of hospitals
and public healthcare systems.
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