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Introduction

▶ Let Y ∈ Y be an unknown future outcome.
▶ Temperature tomorrow at 12:00 in Cambridge. (Y ∈ Y = R)
▶ Claim size. (Y ∈ Y = [0,∞))
▶ Event of rain tomorrow in London. (Y ∈ Y = {0, 1})
▶ Default of credit card client. (Y ∈ Y = {0, 1})

▶ Point prediction for Y :
▶ Single valued “best guess” Z ∈ Y.
▶ Does not quantify uncertainty, but maybe useful/necessary e.g. for pricing.
▶ If X is information available for prediction, often, we try to approximate E[Y | X ].

▶ Probabilistic prediction for Y :
▶ Quantify uncertainty of Y by specifying a distribution F on Y.
▶ If X is information available for prediction, F should approximate L(Y | X ).
▶ Other possibilities to quantify uncertainty of Y : prediction intervals, predictions of

some measure of variability, . . .
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Quality criteria for predictions

▶ What is calibration of predictions?

▶ How do we calibrate predictions?

▶ How do we compare predictions and how is related to calibration?

▶ Forecasts are usually sequential but many concepts are easier to understand in a
“hypothetical” one-period setting.

▶ Future outcome Y and forecasts Z or F are both random and defined on a
probability space (Ω,F ,P).
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Simplest case: Binary outcomes
▶ Y ∈ {0, 1}

▶ Event of rain tomorrow in London. (Y ∈ {0, 1})
▶ Default of credit card client. (Y ∈ {0, 1})

▶ Distribution of Y is characterised by probability of {Y = 1}:
Probabilistic prediction is random variable p ∈ [0, 1].

▶ Since P(Y = 1 | X ) = E(Y | X ),
▶ p is a prediction for the conditional distribution of Y ;
▶ p is a prediction for the conditional mean of Y .

Definition
A probability prediction p ∈ [0, 1] for Y ∈ {0, 1} is calibrated (or reliable) if

E[Y | p] = P(Y = 1 | p) = p.

Predicted probabilities should align with observed frequencies.
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Example
Let X1 ∼ N (0, 1), X2 ∼ N (0, 2) be independent, and

P(Y = 1 | X1,X2) = Φ(X1 + X2).

Predictions:

p0 = 1/2, p1 = Φ
( X1√

3

)
, p2 = Φ

( X2√
2

)
, p3 = Φ(X1 + X2).

▶ All predictions are calibrated.
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Ranjan and Gneiting (2010)
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Diagnostics to assess calibration: Reliability diagrams
Data: (p1,Y1), . . . , (p

n,Yn)

Simulation example

X1 ∼ N (0, 1), X2 ∼ N (0, 2) independent, P(Y = 1 | X1,X2) = Φ(X1 + X2),

p1 = Φ(X1/
√
3), p2 = Φ

(
X2/

√
2), p3 = Φ(X1 + X2), n = 200.
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Real-valued outcomes: Probabilistic predictions

▶ Y ∈ R.
▶ Temperature tomorrow at 12:00 in Cambridge. (Y ∈ R)
▶ Claim size. (Y ∈ Y = [0,∞))

▶ Quantify uncertainty of Y by a probabilistic prediction F .
▶ F is a distribution on R (typically specified as a CDF).

▶ If X is information available for prediction, F should approximate L(Y | X ).
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Illustration: Point and probabilistic predictions
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Probabilistic and point predictions

Forecast Observation Verification

“Tomorrow at 12:00
temperature will be 17.5°C.”

−2 0 2 −2 0 2 −2 0 2

“Tomorrow at 12:00
temperature will be N (17.5, σ2).”

−2 0 2 −2 0 2 −2 0 2
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Evaluating probabilistic predictions

Forecaster 1
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Calibration: Compatibility between forecasts and observations

Probabilities derived from predictive distributions should align with observed
frequencies.

Most popular: Probabilistic calibration/“Flat PIT histogram”

Fi (Yi ) ∼ UNIF(0, 1) for all i

▶ Yi ∈ R, Fi predictive CDF for Yi

▶ Suitable randomization if Fi is not continuous

▶ Closely related to validity of conformal predictive systems. Ensures marginal coverage of
prediction intervals.

▶ Binary outcomes: Yi ∈ {0, 1} : P(Yi = 1|pi ) = pi

▶ Many notions of calibration, except for binary outcomes. . .

11 / 36



Calibration: Compatibility between forecasts and observations

Probabilities derived from predictive distributions should align with observed
frequencies.

Most popular: Probabilistic calibration/“Flat PIT histogram”

Fi (Yi ) ∼ UNIF(0, 1) for all i

▶ Yi ∈ R, Fi predictive CDF for Yi

▶ Suitable randomization if Fi is not continuous

▶ Closely related to validity of conformal predictive systems. Ensures marginal coverage of
prediction intervals.

▶ Binary outcomes: Yi ∈ {0, 1} : P(Yi = 1|pi ) = pi

▶ Many notions of calibration, except for binary outcomes. . .

11 / 36



Calibration: Compatibility between forecasts and observations

Probabilities derived from predictive distributions should align with observed
frequencies.

Most popular: Probabilistic calibration/“Flat PIT histogram”

Fi (Yi ) ∼ UNIF(0, 1) for all i

▶ Yi ∈ R, Fi predictive CDF for Yi

▶ Suitable randomization if Fi is not continuous

▶ Closely related to validity of conformal predictive systems. Ensures marginal coverage of
prediction intervals.

▶ Binary outcomes: Yi ∈ {0, 1} : P(Yi = 1|pi ) = pi

▶ Many notions of calibration, except for binary outcomes. . .

11 / 36



Evaluating probabilistic predictions
µ ∼ N (0, 1), Y ∼ N (µ, 0.09)
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Many notions of calibration . . .

Auto-calibration:
P(Yi > y | Fi ) = 1− Fi (y) ∀y

L(Yi | Fi ) = Fi

⇓
Isotonic calibration:
P(Yi > y | A(Fi )) = 1− Fi (y) ∀y

L(Yi | A(Fi )) = Fi
=⇒ =⇒

Threshold calibration:
P(Yi > y | Fi (y)) = 1− Fi (y) ∀y

⇓

Quantile calibration:
qα(Yi | F−1

i (α)) = F−1
i (α) ∀α

⇓

Marginal calibration:
P(Yi > y) = 1− EFi (y) ∀y

Probabilistic calibration:
Fi (Yi ) ∼ UNIF(0, 1)

P(Fi (Yi ) < α) ≤ α ≤ P(Fi (Yi−) ≤ α) ∀α

And if we want to focus on tails of Fi . . . (Allen et al., 2025b)
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Evaluating probabilistic predictions
µ ∼ N (0, 1), Y ∼ N (µ, 0.09)
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▶ Probabilistic predictions should be calibrated, ideally, auto-calibrated.

▶ Subject to calibration, they should be sharp in order to be informative.

▶ Comparison of probabilistic predictions with proper scoring rules:
Assign a real-valued score assessing calibration and sharpness simultaneously.

Logarithmic Score (LogS) f density of F

LogS(F , y) = − log f (y)

Continuous Ranked Probability Score (CRPS) F CDF, finite mean

CRPS(F , y) =

∫
R
(F (z)− 1{y ≤ z})2 dz

15 / 36



Conformal prediction

Goal: Provide predictions with calibration guarantees out-of-sample.
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What is at the heart of conformal prediction?

“In-sample calibration yields conformal calibration guarantees.”

Predictive system

A set Π ⊆ R× [0, 1] of the form

Π = {(y , τ) | Πℓ(y) ≤ τ ≤ Πu(y)}

with Πℓ ≤ Πu increasing, limy→−∞Πℓ(y) = 0, limy→∞Πu(y) = 1.

Conformal calibration guarantee:
We can construct a predictive system that contains a calibrated CDF.
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Example of in-sample calibration:
Let w1, . . . ,wm ∈ R. Define

F (y) =
1

m

m∑
i=1

1{wi ≤ y}, y ∈ R.

Draw W uniformly at random from w1, . . . ,wm.
Then F is in-sample probabilistically calibrated, that is,

P(F (W ) < α) ≤ α ≤ P(F (W−) ≤ α), α ∈ (0, 1).

F (W ) ≈ UNIF(0, 1)
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Let W1, . . . ,Wn+1 ∈ R be exchangeable and define for w ∈ R

Fw (y) =
1

n + 1

n∑
i=1

1{Wi ≤ y}+ 1

n + 1
1{w ≤ y}, y ∈ R,

and
Πℓ(y) = inf{Fw (y) | w ∈ R}, Πu(y) = sup{Fw (y) | w ∈ R},

Then,
Πℓ(y) ≤ FWn+1(y) ≤ Πu(y), and

P(FWn+1(Wn+1) < α) ≤ α ≤ P(FWn+1(Wn+1−) ≤ α), α ∈ (0, 1).

Proof: Conditional on empirical distribution P̂n+1 of (Wi )
n+1
i=1 , Wn+1 is a random draw from

W1, . . . ,Wn+1. By in-sample probabilistic calibration:

P(FWn+1(Wn+1) < α | P̂n+1) ≤ α ≤ P(FWn+1(Wn+1−) ≤ α | P̂n+1) . . .
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(Classical) conformal prediction trick

Use conformity measure A(P̂, (x , y)) to lift the one-dimensional result to general
spaces X × Y.

Let (X1,Y1), . . . , (Xn+1,Yn+1) ∈ X × R be exchangeable.

▶ P̂y : Empirical distribution of (X1,Y1), . . . , (Xn,Yn), (Xn+1, y) for y ∈ R
▶ F̂ y : Empirical CDF of

W1 = A(P̂y , (X1,Y1)), . . . ,Wn = A(P̂y , (Xn,Yn)),w(y) = A(P̂y , (Xn+1, y))

▶ P(FYn+1(w(Yn+1)) < α) ≤ α ≤ P(FYn+1(w(Yn+1)−) ≤ α)

▶ This implies P(Yn+1 ∈ Cn+1) ≥ 1− α ≥ P(Yn+1 ∈ C−
n+1), where

Cn+1 = {y ∈ R | F y (w(y)) ≥ α}.

▶ Predictive CDF available if y 7→ F y (w(y)), y 7→ F y (w(y)−) are increasing.
(Classical) conformal predictive system
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Alternative
Use other in-sample calibrated procedures.
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Auto-calibration
Let (x1, y1), . . . , (xm, ym) ∈ X × R.
▶ Let B1, . . . ,Bm′ be a partition of {1, . . . ,m}.
▶

Fxk (y) =
1

|Bi |
∑
j∈Bi

1{yj ≤ y}, k ∈ Bi , y ∈ R

is in-sample auto-calibrated, that is,

P̂m(Y ≤ y | FX ) = FX (y), y ∈ R,

hence, in particular, isotonically calibrated, threshold calibrated, quantile
calibrated, and probabilistically calibrated.
Here, (X ,Y ) ∼ P̂m, and P̂m is the empirical distribution of (xj , yj)

m
j=1.

▶ We call this a binning procedure.

▶ All in-sample auto-calibrated procedures are of this form.

▶ Choice: How is the partition constructed?
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Let (X1,Y1), . . . , (Xn+1,Yn+1) ∈ X × R be exchangeable.

Let Π be constructed with a binning procedure:

▶ Let F z
Xk

be the binning CDF constructed with (X1,Y1), . . . , (Xn,Yn), (Xn+1, z).

▶ Define

Πℓ,Xn+1(y) = inf{F z
Xn+1

(y) | z ∈ R}, Πu,Xn+1(z) = sup{F z
Xn+1

(y) | z ∈ R},

Theorem (Conformal calibration guarantee)

Predictive system contains an auto-calibrated CDF:

F
Yn+1

Xn+1
(y) = P(Yn+1 ≤ y | FYn+1

Xn+1
), y ∈ R,

and
Πℓ,Xn+1(y) ≤ F

Yn+1

Xn+1
(y) ≤ Πu,Xn+1(y), y ∈ R
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Isotonic calibration

▶ Middle ground between probabilistic and auto-calibration

▶ Based on Isotonic Distributional Regression (IDR) (Henzi, Ziegel, and Gneiting, 2021)

IDR estimator Let ≤ be a partial order on X .

Define F̂ = (Fxk )
m
k=1 as

F̂ = argmin
Fi⪯stFj if xi≤xj

m∑
ℓ=1

CRPS(Fℓ, yℓ).

Continuous ranked probability score (CRPS)

CRPS(F , y) =

∫
R
(F (z)− 1{y ≤ z})2 dz
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Why IDR?

▶ Non-parametric distributional regression procedure under order constraints

▶ Explicit expression for estimator available

▶ Implementations available (R and Python)

▶ Consistency results available (under regularity conditions)

Theorem (In-sample isotonic calibration of IDR)

IDR is in-sample isotonically calibrated, that is,

P̂m(Y > y | A(FY
X )) = 1− FY

X (y), y ∈ R,

and hence, in particular, threshold calibrated, quantile calibrated, and probabilistically
calibrated. Here, (X ,Y ) ∼ P̂m, and P̂m is the empirical distribution of (xj , yj)

m
j=1.

Henzi, Ziegel, and Gneiting (2021); Arnold and Ziegel (2025)

▶ Choice: How is the partial order on X constructed?
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Let (X1,Y1), . . . , (Xn+1,Yn+1) ∈ X × R be exchangeable.

Let Π be constructed with IDR (conformal IDR):

▶ Let F z
Xk

be the IDR CDF computed from (X1,Y1), . . . , (Xn,Yn), (Xn+1, z).

▶ Define

Πℓ,Xn+1(y) = inf{F z
Xn+1

(y) | z ∈ R}, Πu,Xn+1(z) = sup{F z
Xn+1

(y) | z ∈ R},

Theorem (Conformal calibration guarantee)

Predictive system contains an isotonically calibrated CDF:

F
Yn+1

Xn+1
(y) = 1− P(Yn+1 > y | A(F

Yn+1

Xn+1
)), y ∈ R,

and
Πℓ,Xn+1(y) ≤ F

Yn+1

Xn+1
(y) ≤ Πu,Xn+1(y), y ∈ R
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Comments

▶ Conformal guarantee does not depend of any isotonicity assumption.

▶ The partial order on X can be estimated on the same sample (computational
challenge! “full conformal”) or on an independent sample (“split conformal”).

27 / 36



Thickness of predictive systems

▶ Predictive systems are only useful if they are thin.

▶ Classical conformal predictive systems:
▶ Thickness is 1/(n + 1).

▶ Auto-calibration: Binning procedures, where bins are determined only based on
X1, . . . ,Xn+1 (example: k-means clustering):
▶ Thickness is 1/(size of bin containing n + 1).

▶ Isotonic calibration with IDR:
▶ Expected thickness is less or equal to 14n−1/6.
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Tiny simulation example for conformal IDR

X ∼ N (0, 1), Y ∼ N (X , 1), n = 512.

▶ Principled approach to
choose a crisp conformal
IDR.

▶ Expected thickness goes to
zero asymptotically.

▶ Thickness of conformal IDR
informs about epistemic
uncertainty.
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Aleatoric and epistemic uncertainty

Aleatoric uncertainty

Aleatoric uncertainty of future outcome Y is fully described by

L(Y | X ).

Uncertainty remains even with infinite amounts of data (Xi ,Yi ).

Epistemic uncertainty (second order probabilities, ambiguity, . . . )

Uncertainty due to our approximation of L(Y | X ) based on limited data, limited
knowledge of data generating process, parameter estimation, . . . .
Uncertainty goes away if we have infinite amounts of data.

▶ With IDR we recover L(Y | A(X )).
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Case study: Length of stay in intensive care units

▶ Predictions for individual patients’ length of stay in ICU’s in Switzerland 24h after
admission1

Threshold calibration

1
Data provided by G.-R. Kleger and Schweizerische Gesellschaft für Intensivmedizin. Data is internal hospital data and not publicly available.
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Examples of predictive cdfs
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Epistemic uncertainty assessment with conformal IDR
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Summary

▶ In-sample calibration yields conformal calibration guarantees.

▶ Strong out-of-sample calibration guarantees are possible.

▶ Arguments can be extended to distribution shifts.

▶ Conformal binning is simple but works well.
Only example explored so far: k-means clustering.

▶ Conformal IDR allows to quantify epistemic uncertainty, since IDR converges to a
well-understood limiting object.

▶ Outlook: Conformal calibration guarantees for point predictions.
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Outlook: Conformal calibration guarantees for point predictions
▶ Y ∈ R.

▶ Claim size. (Y ∈ [0,∞) ⊆ R)
▶ Point prediction for Y :

▶ Single valued “best guess” Z ∈ Y.
▶ Does not quantify uncertainty, but maybe useful/necessary e.g. for pricing.
▶ If X is information available for prediction, often, Z should approximate E[Y | X ].

Definition
A prediction Z ∈ R for Y ∈ R is expectation-calibrated if

E[Y | Z ] = Z .

Conformal calibration guarantee:
Construct (a small) set Cn+1 such that

P
(
E[Yn+1 | Zn+1] ∈ Cn+1

)
≥ 1− α.
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Why the CRPS?
It is a strictly proper scoring rule.

If Y ∼ F and G is any other CDF, then S(F , y) is strictly proper if

EFS(F ,Y ) ≤ EFS(G ,Y )

with equality if and only if F = G .

Example 1
If F ,G have finite mean, then the CRPS

CRPS(F ,Y ) =

∫
R
(F (z)− 1{Y ≤ z})2 dz

is strictly proper.

Example 2
If F ,G have densities f , g , then the logarithmic score

Slog(F , y) = − log f (y)

is strictly proper.
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Mathematical setup
“If the covariate increases we expect an increase of the outcome.”

x ≤ x ′ =⇒ L(Y | X = x) ⪯st L(Y | X = x ′)

⇐⇒ FY |X=x(y) ≥ FY |X=x ′(y), y ∈ R
⇐⇒ qα(Y |X = x) ≤ qα(Y |X = x ′), α ∈ (0, 1)

IDR estimator (for x ∈ R): Data (xi , yi )
n
i=1, x1 < · · · < xn

Define F̂ = (F̂i )
n
i=1 = (F̂Y |X=xi )

n
i=1 as

F̂ = argmin
F1⪯st···⪯stFn

n∑
ℓ=1

CRPS(Fℓ, yℓ).

Continuous ranked probability score (CRPS)

CRPS(F ,Y ) =

∫
R
(F (z)− 1{Y ≤ z})2 dz
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Then

F̂Y |X=xi = F̂i (y) = max
j=i ,...,n

min
k=1,...,j

1

j − k + 1

j∑
ℓ=k

1{yℓ ≤ y}.

▶ F̂1(y), . . . , F̂n(y) is the antitonic regression of the binary outcomes
1{y1 ≤ y}, . . . ,1{yn ≤ y}.
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Illustration of IDR: n = 600 draws of Z ∼ Unif(0, 10) and
Y ∼ Gamma(sh =

√
Z , sc = min(max(Z , 1), 6)).
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