Conformal calibration guarantees for reliable predictions

Johanna Ziegel

joint work with

Sam Allen, Georgios Gavrilopoulos, Alexander Henzi, Gian-Reto Kleger

ETH Zurich

Insurance Data Science Conference Bayes Business School, London

19-20 June, 2025

• Let $Y \in \mathcal{Y}$ be an unknown future outcome.

- Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathcal{Y} = \mathbb{R})$
- Claim size. $(Y \in \mathcal{Y} = [0, \infty))$
- Event of rain tomorrow in London. $(Y \in \mathcal{Y} = \{0, 1\})$
- Default of credit card client. $(Y \in \mathcal{Y} = \{0, 1\})$
- Point prediction for Y:
 - Single valued "best guess" $Z \in \mathcal{Y}$.
 - Does not quantify uncertainty, but maybe useful/necessary e.g. for pricing.
 - If X is information available for prediction, often, we try to approximate $\mathbb{E}[Y \mid X]$.
- Probabilistic prediction for Y:
 - Quantify uncertainty of Y by specifying a distribution F on \mathcal{Y} .
 - ▶ If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.
 - Other possibilities to quantify uncertainty of Y: prediction intervals, predictions of some measure of variability, ...

• Let $Y \in \mathcal{Y}$ be an unknown future outcome.

- Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathcal{Y} = \mathbb{R})$
- Claim size. $(Y \in \mathcal{Y} = [0, \infty))$
- Event of rain tomorrow in London. $(Y \in \mathcal{Y} = \{0, 1\})$
- Default of credit card client. $(Y \in \mathcal{Y} = \{0, 1\})$
- ► Point prediction for *Y*:
 - Single valued "best guess" $Z \in \mathcal{Y}$.
 - Does not quantify uncertainty, but maybe useful/necessary e.g. for pricing.
 - If X is information available for prediction, often, we try to approximate $\mathbb{E}[Y \mid X]$.
- Probabilistic prediction for Y:
 - Quantify uncertainty of Y by specifying a distribution F on \mathcal{Y} .
 - If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.
 - Other possibilities to quantify uncertainty of Y: prediction intervals, predictions of some measure of variability, ...

• Let $Y \in \mathcal{Y}$ be an unknown future outcome.

- Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathcal{Y} = \mathbb{R})$
- Claim size. $(Y \in \mathcal{Y} = [0, \infty))$
- Event of rain tomorrow in London. $(Y \in \mathcal{Y} = \{0, 1\})$
- Default of credit card client. $(Y \in \mathcal{Y} = \{0, 1\})$

► Point prediction for *Y*:

- Single valued "best guess" $Z \in \mathcal{Y}$.
- Does not quantify uncertainty, but maybe useful/necessary e.g. for pricing.
- ▶ If X is information available for prediction, often, we try to approximate $\mathbb{E}[Y \mid X]$.

Probabilistic prediction for Y:

- Quantify uncertainty of Y by specifying a distribution F on \mathcal{Y} .
- If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.
- Other possibilities to quantify uncertainty of Y: prediction intervals, predictions of some measure of variability, ...

• Let $Y \in \mathcal{Y}$ be an unknown future outcome.

- Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathcal{Y} = \mathbb{R})$
- Claim size. $(Y \in \mathcal{Y} = [0, \infty))$
- Event of rain tomorrow in London. $(Y \in \mathcal{Y} = \{0, 1\})$
- Default of credit card client. $(Y \in \mathcal{Y} = \{0, 1\})$
- ► Point prediction for *Y*:
 - Single valued "best guess" $Z \in \mathcal{Y}$.
 - Does not quantify uncertainty, but maybe useful/necessary e.g. for pricing.
 - If X is information available for prediction, often, we try to approximate $\mathbb{E}[Y \mid X]$.
- Probabilistic prediction for Y:
 - Quantify uncertainty of Y by specifying a distribution F on \mathcal{Y} .
 - If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.
 - Other possibilities to quantify uncertainty of Y: prediction intervals, predictions of some measure of variability, ...

• Let $Y \in \mathcal{Y}$ be an unknown future outcome.

- Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathcal{Y} = \mathbb{R})$
- Claim size. $(Y \in \mathcal{Y} = [0, \infty))$
- Event of rain tomorrow in London. $(Y \in \mathcal{Y} = \{0, 1\})$
- Default of credit card client. $(Y \in \mathcal{Y} = \{0, 1\})$
- ► Point prediction for *Y*:
 - Single valued "best guess" $Z \in \mathcal{Y}$.
 - Does not quantify uncertainty, but maybe useful/necessary e.g. for pricing.
 - If X is information available for prediction, often, we try to approximate $\mathbb{E}[Y \mid X]$.
- Probabilistic prediction for Y:
 - Quantify uncertainty of Y by specifying a distribution F on \mathcal{Y} .
 - If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.
 - Other possibilities to quantify uncertainty of Y: prediction intervals, predictions of some measure of variability, ...

What is calibration of predictions?

How do we calibrate predictions?

How do we compare predictions and how is related to calibration?

- Forecasts are usually sequential but many concepts are easier to understand in a "hypothetical" one-period setting.
- Future outcome Y and forecasts Z or F are both random and defined on a probability space (Ω, F, P).

- What is calibration of predictions?
- How do we calibrate predictions?
- How do we compare predictions and how is related to calibration?
- Forecasts are usually sequential but many concepts are easier to understand in a "hypothetical" one-period setting.
- Future outcome Y and forecasts Z or F are both random and defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- What is calibration of predictions?
- How do we calibrate predictions?
- How do we compare predictions and how is related to calibration?
- Forecasts are usually sequential but many concepts are easier to understand in a "hypothetical" one-period setting.
- Future outcome Y and forecasts Z or F are both random and defined on a probability space (Ω, F, P).

- What is calibration of predictions?
- How do we calibrate predictions?
- How do we compare predictions and how is related to calibration?
- Forecasts are usually sequential but many concepts are easier to understand in a "hypothetical" one-period setting.
- Future outcome Y and forecasts Z or F are both random and defined on a probability space (Ω, F, P).

- ▶ $Y \in \{0, 1\}$
 - Event of rain tomorrow in London. ($Y \in \{0, 1\}$)
 - Default of credit card client. $(Y \in \{0, 1\})$
- ▶ Distribution of Y is characterised by probability of {Y = 1}: Probabilistic prediction is random variable p ∈ [0, 1].
- Since $\mathbb{P}(Y = 1 \mid X) = \mathbb{E}(Y \mid X)$,
 - p is a prediction for the conditional distribution of Y;
 - p is a prediction for the conditional mean of Y.

Definition

A probability prediction $p \in [0,1]$ for $Y \in \{0,1\}$ is calibrated (or reliable) if

$$\mathbb{E}[Y \mid p] = \mathbb{P}(Y = 1 \mid p) = p.$$

Predicted probabilities should align with observed frequencies.

- ▶ $Y \in \{0, 1\}$
 - Event of rain tomorrow in London. ($Y \in \{0, 1\}$)
 - Default of credit card client. $(Y \in \{0, 1\})$
- ▶ Distribution of Y is characterised by probability of {Y = 1}: Probabilistic prediction is random variable p ∈ [0, 1].
- $\blacktriangleright \text{ Since } \mathbb{P}(Y = 1 \mid X) = \mathbb{E}(Y \mid X),$
 - *p* is a prediction for the conditional distribution of *Y*;
 - p is a prediction for the conditional mean of Y.

Definition

A probability prediction $p\in [0,1]$ for $Y\in \{0,1\}$ is calibrated (or reliable) if

$$\mathbb{E}[Y \mid p] = \mathbb{P}(Y = 1 \mid p) = p.$$

Predicted probabilities should align with observed frequencies.

- ▶ $Y \in \{0, 1\}$
 - Event of rain tomorrow in London. ($Y \in \{0, 1\}$)
 - Default of credit card client. $(Y \in \{0,1\})$

▶ Distribution of Y is characterised by probability of {Y = 1}: Probabilistic prediction is random variable p ∈ [0, 1].

• Since
$$\mathbb{P}(Y = 1 \mid X) = \mathbb{E}(Y \mid X)$$
,

- p is a prediction for the conditional distribution of Y;
- \triangleright p is a prediction for the conditional mean of Y.

Definition

A probability prediction $p \in [0,1]$ for $Y \in \{0,1\}$ is calibrated (or reliable) if

$$\mathbb{E}[Y \mid p] = \mathbb{P}(Y = 1 \mid p) = p.$$

Predicted probabilities should align with observed frequencies.

- ▶ $Y \in \{0, 1\}$
 - Event of rain tomorrow in London. ($Y \in \{0, 1\}$)
 - Default of credit card client. $(Y \in \{0, 1\})$

▶ Distribution of Y is characterised by probability of {Y = 1}: Probabilistic prediction is random variable p ∈ [0, 1].

• Since
$$\mathbb{P}(Y = 1 \mid X) = \mathbb{E}(Y \mid X)$$
,

- p is a prediction for the conditional distribution of Y;
- \triangleright p is a prediction for the conditional mean of Y.

Definition

A probability prediction $p \in [0,1]$ for $Y \in \{0,1\}$ is *calibrated* (or *reliable*) if

$$\mathbb{E}[Y \mid \rho] = \mathbb{P}(Y = 1 \mid \rho) = \rho.$$

Predicted probabilities should align with observed frequencies.

Example

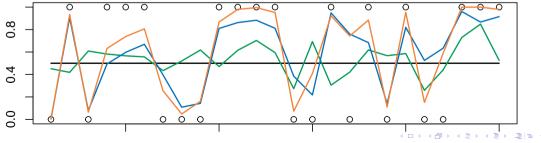
Let $X_1 \sim \mathcal{N}(0,1)$, $X_2 \sim \mathcal{N}(0,2)$ be independent, and

$$\mathbb{P}(Y = 1 \mid X_1, X_2) = \Phi(X_1 + X_2).$$

Predictions:

$$p_0 = 1/2, \quad p_1 = \Phi\left(\frac{X_1}{\sqrt{3}}\right), \quad p_2 = \Phi\left(\frac{X_2}{\sqrt{2}}\right), \quad p_3 = \Phi(X_1 + X_2).$$

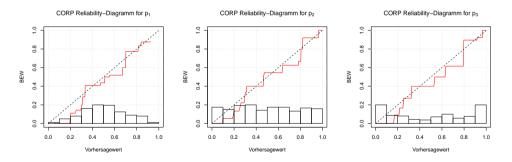
All predictions are calibrated.



Diagnostics to assess calibration: Reliability diagrams Data: $(p^1, Y_1), \dots, (p^n, Y_n)$

Simulation example

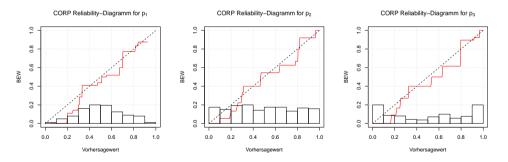
 $X_1 \sim \mathcal{N}(0,1), X_2 \sim \mathcal{N}(0,2)$ independent, $\mathbb{P}(Y = 1 \mid X_1, X_2) = \Phi(X_1 + X_2), p_1 = \Phi(X_1/\sqrt{3}), p_2 = \Phi(X_2/\sqrt{2}), p_3 = \Phi(X_1 + X_2), n = 200.$



ر Dimitriadis et علي 2021 مرد 6/36 Diagnostics to assess calibration: Reliability diagrams Data: $(p^1, Y_1), \dots, (p^n, Y_n)$

Simulation example

 $X_1 \sim \mathcal{N}(0,1), X_2 \sim \mathcal{N}(0,2)$ independent, $\mathbb{P}(Y = 1 \mid X_1, X_2) = \Phi(X_1 + X_2), p_1 = \Phi(X_1/\sqrt{3}), p_2 = \Phi(X_2/\sqrt{2}), p_3 = \Phi(X_1 + X_2), n = 200.$



. (Dimitriadis et al., 2021) 0<0 6/36 Real-valued outcomes: Probabilistic predictions

$\triangleright Y \in \mathbb{R}.$

- Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathbb{R})$
- Claim size. $(Y \in \mathcal{Y} = [0, \infty))$
- Quantify uncertainty of Y by a probabilistic prediction F.
 - F is a distribution on \mathbb{R} (typically specified as a CDF).
- ▶ If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.

Real-valued outcomes: Probabilistic predictions

$\triangleright Y \in \mathbb{R}.$

- Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathbb{R})$
- Claim size. $(Y \in \mathcal{Y} = [0, \infty))$
- Quantify uncertainty of Y by a probabilistic prediction F.
 - F is a distribution on \mathbb{R} (typically specified as a CDF).
- ▶ If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.

Illustration: Point and probabilistic predictions

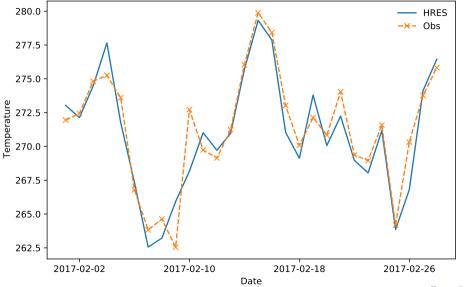
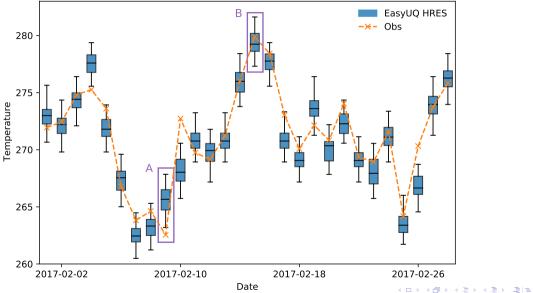
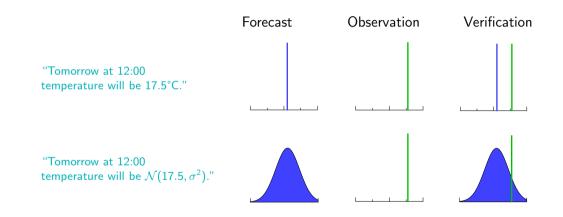


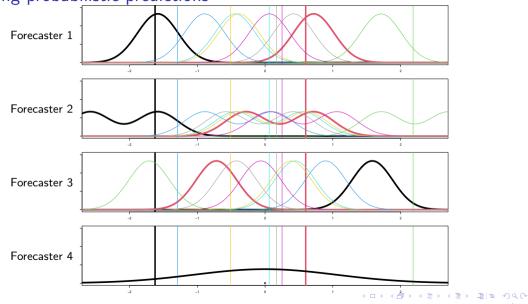
Illustration: Point and probabilistic predictions



Probabilistic and point predictions



Evaluating probabilistic predictions



10/36

Calibration: Compatibility between forecasts and observations

Probabilities derived from predictive distributions should align with observed frequencies.

Most popular: Probabilistic calibration/ "Flat PIT histogram"

$F_i(Y_i) \sim \mathrm{UNIF}(0,1)$ for all i

- ▶ $Y_i \in \mathbb{R}$, F_i predictive CDF for Y_i
- Suitable randomization if *F_i* is not continuous
- Closely related to validity of conformal predictive systems. Ensures marginal coverage of prediction intervals.
- **Binary outcomes**: $Y_i \in \{0,1\}$: $\mathbb{P}(Y_i = 1|p_i) = p_i$

Many notions of calibration, except for binary outcomes...

Calibration: Compatibility between forecasts and observations

Probabilities derived from predictive distributions should align with observed frequencies.

Most popular: Probabilistic calibration/ "Flat PIT histogram"

 $F_i(Y_i) \sim \text{UNIF}(0,1)$ for all i

- ▶ $Y_i \in \mathbb{R}$, F_i predictive CDF for Y_i
- Suitable randomization if F_i is not continuous
- Closely related to validity of conformal predictive systems. Ensures marginal coverage of prediction intervals.
- **Binary outcomes**: $Y_i \in \{0,1\}$: $\mathbb{P}(Y_i = 1|p_i) = p_i$

• *Many* notions of calibration, except for binary outcomes...

Calibration: Compatibility between forecasts and observations

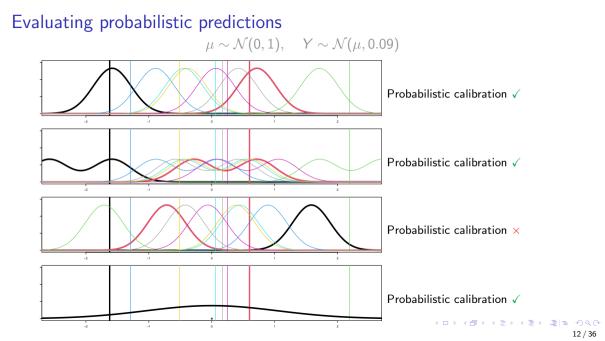
Probabilities derived from predictive distributions should align with observed frequencies.

Most popular: Probabilistic calibration/ "Flat PIT histogram"

 $F_i(Y_i) \sim \text{UNIF}(0,1)$ for all i

- ▶ $Y_i \in \mathbb{R}$, F_i predictive CDF for Y_i
- Suitable randomization if F_i is not continuous
- Closely related to validity of conformal predictive systems. Ensures marginal coverage of prediction intervals.
- **b** Binary outcomes: $Y_i \in \{0,1\}$: $\mathbb{P}(Y_i = 1|p_i) = p_i$

Many notions of calibration, except for binary outcomes...



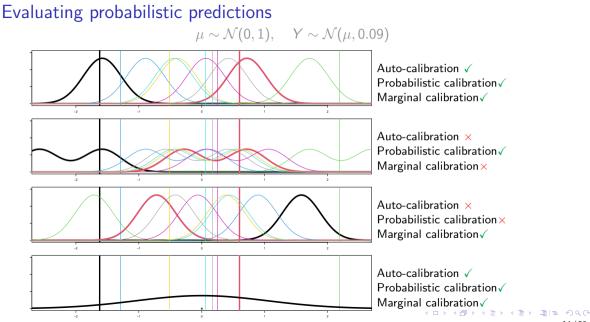
Many notions of calibration ...

Auto-calibration: $\mathbb{P}(Y_i > y \mid F_i) = 1 - F_i(y) \forall y$ $\mathcal{L}(Y_i \mid F_i) = F_i$ 1 Isotonic calibration: $\mathbb{P}(Y_i > v \mid \mathcal{A}(F_i)) = 1 - F_i(v) \forall v$ $\mathcal{L}(Y_i \mid \mathcal{A}(F_i)) = F_i$ Threshold calibration: $\mathbb{P}(Y_i > y \mid F_i(y)) = 1 - F_i(y) \forall y$

Marginal calibration: $\mathbb{P}(Y_i > y) = 1 - \mathbb{E}F_i(y) \forall y$ Quantile calibration: $q_{\alpha}(Y_i \mid F_i^{-1}(\alpha)) = F_i^{-1}(\alpha) \forall \alpha$ \Downarrow

Probabilistic calibration: $F_i(Y_i) \sim \text{UNIF}(0, 1)$ $\mathbb{P}(F_i(Y_i) < \alpha) \le \alpha \le \mathbb{P}(F_i(Y_i-) \le \alpha) \ \forall \alpha$

And if we want to focus on tails of $F_{i...}$ (Allen et al., 2025b)



- Probabilistic predictions should be calibrated, ideally, auto-calibrated.
- Subject to calibration, they should be *sharp* in order to be informative.
- Comparison of probabilistic predictions with proper scoring rules: Assign a real-valued score assessing calibration and sharpness simultaneously.

Logarithmic Score (LogS) f density of F

$$LogS(F, y) = -\log f(y)$$

Continuous Ranked Probability Score (CRPS) F CDF, finite mean

$$CRPS(F, y) = \int_{\mathbb{R}} (F(z) - \mathbb{1}\{y \le z\})^2 dz$$

Conformal prediction

Goal: Provide predictions with calibration guarantees out-of-sample.

・ロ・・日・・田・・日・ 日・ シック

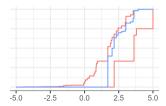
What is at the heart of conformal prediction?

"In-sample calibration yields conformal calibration guarantees."

Predictive system A set $\Pi \subseteq \mathbb{R} imes [0,1]$ of the form

 $\Pi = \{(y,\tau) \mid \Pi_{\ell}(y) \le \tau \le \Pi_{u}(y)\}$

with $\Pi_{\ell} \leq \Pi_{u}$ increasing, $\lim_{y \to -\infty} \Pi_{\ell}(y) = 0$, $\lim_{y \to \infty} \Pi_{u}(y) = 1$.



Conformal calibration guarantee:

What is at the heart of conformal prediction?

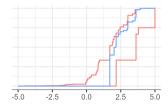
"In-sample calibration yields conformal calibration guarantees."

Predictive system

A set $\Pi \subseteq \mathbb{R} \times [0,1]$ of the form

$$\mathsf{\Pi} = \{(y,\tau) \mid \mathsf{\Pi}_{\ell}(y) \leq \tau \leq \mathsf{\Pi}_{u}(y)\}$$

with $\Pi_{\ell} \leq \Pi_{u}$ increasing, $\lim_{y \to -\infty} \Pi_{\ell}(y) = 0$, $\lim_{y \to \infty} \Pi_{u}(y) = 1$.



Conformal calibration guarantee:

What is at the heart of conformal prediction?

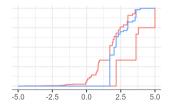
"In-sample calibration yields conformal calibration guarantees."

Predictive system

A set $\Pi \subseteq \mathbb{R} \times [0,1]$ of the form

$$\mathsf{\Pi} = \{(y,\tau) \mid \mathsf{\Pi}_{\ell}(y) \leq \tau \leq \mathsf{\Pi}_{u}(y)\}$$

with $\Pi_{\ell} \leq \Pi_{u}$ increasing, $\lim_{y \to -\infty} \Pi_{\ell}(y) = 0$, $\lim_{y \to \infty} \Pi_{u}(y) = 1$.



Conformal calibration guarantee:

We can construct a predictive system that contains a calibrated CDF.

Example of in-sample calibration:

Let $w_1, \ldots, w_m \in \mathbb{R}$. Define

$$F(y) = rac{1}{m} \sum_{i=1}^m \mathbb{1}\{w_i \leq y\}, \quad y \in \mathbb{R}.$$

Draw W uniformly at random from w_1, \ldots, w_m . Then F is *in-sample* probabilistically calibrated, that is,

$$\mathbb{P}(F(W) < \alpha) \le \alpha \le \mathbb{P}(F(W-) \le \alpha), \quad \alpha \in (0,1).$$

 $F(W) \approx \text{UNIF}(0,1)$

Let $W_1,\ldots,W_{n+1}\in\mathbb{R}$ be exchangeable and define for $w\in\mathbb{R}$

$$F^w(y) = rac{1}{n+1}\sum_{i=1}^n \mathbb{1}\{W_i \leq y\} + rac{1}{n+1}\mathbb{1}\{w \leq y\}, \quad y \in \mathbb{R},$$

and

$$\Pi_{\ell}(y) = \inf\{F^w(y) \mid w \in \mathbb{R}\}, \quad \Pi_u(y) = \sup\{F^w(y) \mid w \in \mathbb{R}\},\$$

Then,

$$\begin{split} &\Pi_{\ell}(y) \leq F^{W_{n+1}}(y) \leq \Pi_{u}(y), \quad \text{and} \\ &\mathbb{P}(F^{W_{n+1}}(W_{n+1}) < \alpha) \leq \alpha \leq \mathbb{P}(F^{W_{n+1}}(W_{n+1}-) \leq \alpha), \quad \alpha \in (0,1). \end{split}$$

Proof: Conditional on empirical distribution \mathbb{P}_{n+1} of $(W_i)_{i=1}^{n+1}$, W_{n+1} is a random draw from W_1, \ldots, W_{n+1} . By in-sample probabilistic calibration:

 $\mathbb{P}(F^{W_{n+1}}(W_{n+1}) < \alpha \mid \hat{\mathbb{P}}_{n+1}) \le \alpha \le \mathbb{P}(F^{W_{n+1}}(W_{n+1}-) \le \alpha \mid \hat{\mathbb{P}}_{n+1}) \dots$

Let $W_1,\ldots,W_{n+1}\in\mathbb{R}$ be exchangeable and define for $w\in\mathbb{R}$

$$F^w(y) = rac{1}{n+1}\sum_{i=1}^n \mathbb{1}\{W_i \leq y\} + rac{1}{n+1}\mathbb{1}\{w \leq y\}, \quad y \in \mathbb{R},$$

and

$$\Pi_{\ell}(y) = \inf\{F^w(y) \mid w \in \mathbb{R}\}, \quad \Pi_u(y) = \sup\{F^w(y) \mid w \in \mathbb{R}\},\$$

Then,

$$\begin{split} &\Pi_{\ell}(y) \leq F^{\mathcal{W}_{n+1}}(y) \leq \Pi_{u}(y), \quad \text{and} \\ &\mathbb{P}(F^{\mathcal{W}_{n+1}}(\mathcal{W}_{n+1}) < \alpha) \leq \alpha \leq \mathbb{P}(F^{\mathcal{W}_{n+1}}(\mathcal{W}_{n+1}-) \leq \alpha), \quad \alpha \in (0,1). \end{split}$$

Proof: Conditional on empirical distribution $\hat{\mathbb{P}}_{n+1}$ of $(W_i)_{i=1}^{n+1}$, W_{n+1} is a random draw from W_1, \ldots, W_{n+1} . By in-sample probabilistic calibration:

$$\mathbb{P}(F^{W_{n+1}}(W_{n+1}) < \alpha \mid \hat{\mathbb{P}}_{n+1}) \le \alpha \le \mathbb{P}(F^{W_{n+1}}(W_{n+1}-) \le \alpha \mid \hat{\mathbb{P}}_{n+1}) \dots$$

Use conformity measure $A(\hat{\mathbb{P}}, (x, y))$ to lift the one-dimensional result to general spaces $\mathcal{X} \times \mathcal{Y}$.

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} \times \mathbb{R}$ be exchangeable.

- ▶ $\hat{\mathbb{P}}^{y}$: Empirical distribution of $(X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, y)$ for $y \in \mathbb{R}$
- ▶ \hat{F}^{y} : Empirical CDF of

 $W_1 = A(\hat{\mathbb{P}}^y, (X_1, Y_1)), \dots, W_n = A(\hat{\mathbb{P}}^y, (X_n, Y_n)), w(y) = A(\hat{\mathbb{P}}^y, (X_{n+1}, y))$

$$\mathbb{P}(\mathcal{F}^{Y_{n+1}}(w(Y_{n+1})) < \alpha) \le \alpha \quad \le \mathbb{P}(\mathcal{F}^{Y_{n+1}}(w(Y_{n+1})) \le \alpha)$$

▶ This implies $\mathbb{P}(Y_{n+1} \in C_{n+1}) \ge 1 - \alpha \ge \mathbb{P}(Y_{n+1} \in C_{n+1}^{-})$, where

$$C_{n+1} = \{ y \in \mathbb{R} \mid F^{y}(w(y)) \geq \alpha \}.$$

Predictive CDF available if y → F^y(w(y)), y → F^y(w(y)-) are increasing. (Classical) conformal predictive system

Use conformity measure $A(\hat{\mathbb{P}}, (x, y))$ to lift the one-dimensional result to general spaces $\mathcal{X} \times \mathcal{Y}$.

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} imes \mathbb{R}$ be exchangeable.

- ▶ $\hat{\mathbb{P}}^{y}$: Empirical distribution of $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$ for $y \in \mathbb{R}$
- \hat{F}^{y} : Empirical CDF of

 $W_1 = A(\hat{\mathbb{P}}^y, (X_1, Y_1)), \dots, W_n = A(\hat{\mathbb{P}}^y, (X_n, Y_n)), w(y) = A(\hat{\mathbb{P}}^y, (X_{n+1}, y))$

$$\mathbb{P}(\mathcal{F}^{Y_{n+1}}(w(Y_{n+1})) < \alpha) \le \alpha \le \mathbb{P}(\mathcal{F}^{Y_{n+1}}(w(Y_{n+1})) \le \alpha)$$

▶ This implies $\mathbb{P}(Y_{n+1} \in C_{n+1}) \ge 1 - \alpha \ge \mathbb{P}(Y_{n+1} \in C_{n+1}^{-})$, where

$$C_{n+1} = \{ y \in \mathbb{R} \mid F^{y}(w(y)) \ge \alpha \}.$$

Predictive CDF available if y → F^y(w(y)), y → F^y(w(y)-) are increasing. (Classical) conformal predictive system

Use conformity measure $A(\hat{\mathbb{P}}, (x, y))$ to lift the one-dimensional result to general spaces $\mathcal{X} \times \mathcal{Y}$.

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} imes \mathbb{R}$ be exchangeable.

- ▶ $\hat{\mathbb{P}}^{y}$: Empirical distribution of $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$ for $y \in \mathbb{R}$
- \hat{F}^{y} : Empirical CDF of

$$\mathcal{W}_1 = A(\hat{\mathbb{P}}^y, (X_1, Y_1)), \dots, \mathcal{W}_n = A(\hat{\mathbb{P}}^y, (X_n, Y_n)), w(y) = A(\hat{\mathbb{P}}^y, (X_{n+1}, y))$$

$$\mathbb{P}(F^{Y_{n+1}}(w(Y_{n+1})) < \alpha) \le \alpha \le \mathbb{P}(F^{Y_{n+1}}(w(Y_{n+1})) \le \alpha)$$

▶ This implies $\mathbb{P}(Y_{n+1} \in C_{n+1}) \ge 1 - \alpha \ge \mathbb{P}(Y_{n+1} \in C_{n+1}^{-})$, where

$$C_{n+1} = \{ y \in \mathbb{R} \mid F^{y}(w(y)) \geq \alpha \}.$$

Predictive CDF available if y → F^y(w(y)), y → F^y(w(y)-) are increasing. (Classical) conformal predictive system

Use conformity measure $A(\hat{\mathbb{P}}, (x, y))$ to lift the one-dimensional result to general spaces $\mathcal{X} \times \mathcal{Y}$.

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} imes \mathbb{R}$ be exchangeable.

- ▶ $\hat{\mathbb{P}}^{y}$: Empirical distribution of $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$ for $y \in \mathbb{R}$
- \hat{F}^{y} : Empirical CDF of

$$\mathcal{W}_1 = A(\hat{\mathbb{P}}^y, (X_1, Y_1)), \dots, \mathcal{W}_n = A(\hat{\mathbb{P}}^y, (X_n, Y_n)), w(y) = A(\hat{\mathbb{P}}^y, (X_{n+1}, y))$$

$$\mathbb{P}(F^{Y_{n+1}}(w(Y_{n+1})) < \alpha) \le \alpha \le \mathbb{P}(F^{Y_{n+1}}(w(Y_{n+1})) \le \alpha)$$

▶ This implies $\mathbb{P}(Y_{n+1} \in C_{n+1}) \ge 1 - \alpha \ge \mathbb{P}(Y_{n+1} \in C_{n+1}^{-})$, where

$$C_{n+1} = \{ y \in \mathbb{R} \mid F^{y}(w(y)) \geq \alpha \}.$$

Predictive CDF available if y → F^y(w(y)), y → F^y(w(y)-) are increasing. (Classical) conformal predictive system

Alternative Use other in-sample calibrated procedures.

Let $(x_1, y_1), \dots, (x_m, y_m) \in \mathcal{X} \times \mathbb{R}$. Let $B_1, \dots, B_{m'}$ be a partition of $\{1, \dots, m\}$.

$$F_{x_k}(y) = rac{1}{|B_i|} \sum_{j \in B_i} \mathbb{1}\{y_j \leq y\}, \quad k \in B_i, y \in \mathbb{R}$$

is in-sample auto-calibrated, that is,

$$\hat{\mathbb{P}}_m(Y \leq y \mid F_X) = F_X(y), \quad y \in \mathbb{R},$$

hence, in particular, isotonically calibrated, threshold calibrated, quantile calibrated, and probabilistically calibrated.

Here, $(X, Y) \sim \hat{\mathbb{P}}_m$, and $\hat{\mathbb{P}}_m$ is the empirical distribution of $(x_j, y_j)_{j=1}^m$.

- We call this a *binning procedure*.
- All in-sample auto-calibrated procedures are of this form.
- ▶ Choice: How is the partition constructed?

Let $(x_1, y_1), \dots, (x_m, y_m) \in \mathcal{X} \times \mathbb{R}$. Let $B_1, \dots, B_{m'}$ be a partition of $\{1, \dots, m\}$. $F_{x_k}(y) = \frac{1}{|x_k|} \sum_{i=1}^{k} \mathbb{I}\{y_i \leq y\}, \quad k$

$$F_{x_k}(y) = rac{1}{|B_i|} \sum_{j \in B_i} \mathbb{1}\{y_j \leq y\}, \quad k \in B_i, y \in \mathbb{R}$$

is in-sample auto-calibrated, that is,

$$\hat{\mathbb{P}}_m(Y \leq y \mid F_X) = F_X(y), \quad y \in \mathbb{R},$$

hence, in particular, isotonically calibrated, threshold calibrated, quantile calibrated, and probabilistically calibrated.

Here, $(X, Y) \sim \hat{\mathbb{P}}_m$, and $\hat{\mathbb{P}}_m$ is the empirical distribution of $(x_j, y_j)_{j=1}^m$.

- ► We call this a *binning procedure*.
- All in-sample auto-calibrated procedures are of this form.
- ▶ Choice: How is the partition constructed?

Let
$$(x_1, y_1), \dots, (x_m, y_m) \in \mathcal{X} \times \mathbb{R}$$
.
Let $B_1, \dots, B_{m'}$ be a partition of $\{1, \dots, m\}$.
 $F_{x_k}(y) = \frac{1}{|x_k|} \sum \mathbb{1}\{y_k \leq y\}, \quad k$

$$\mathcal{F}_{x_k}(y) = rac{1}{|B_i|} \sum_{j \in B_i} \mathbb{1}\{y_j \leq y\}, \quad k \in B_i, y \in \mathbb{R}$$

is in-sample auto-calibrated, that is,

$$\hat{\mathbb{P}}_m(Y \leq y \mid F_X) = F_X(y), \quad y \in \mathbb{R},$$

hence, in particular, isotonically calibrated, threshold calibrated, quantile calibrated, and probabilistically calibrated.

Here, $(X, Y) \sim \hat{\mathbb{P}}_m$, and $\hat{\mathbb{P}}_m$ is the empirical distribution of $(x_j, y_j)_{j=1}^m$.

► We call this a *binning procedure*.

All in-sample auto-calibrated procedures are of this form.

Choice: How is the partition constructed?

Let
$$(x_1, y_1), \dots, (x_m, y_m) \in \mathcal{X} \times \mathbb{R}$$
.
Let $B_1, \dots, B_{m'}$ be a partition of $\{1, \dots, m\}$.
 $F_{x_k}(y) = \frac{1}{1-1} \sum \mathbb{1}\{y_i < y\}, k$

$$\mathcal{F}_{\mathsf{x}_k}(y) = rac{1}{|\mathcal{B}_i|} \sum_{j \in \mathcal{B}_i} \mathbb{1}\{y_j \leq y\}, \quad k \in \mathcal{B}_i, y \in \mathbb{R}$$

is in-sample auto-calibrated, that is,

$$\hat{\mathbb{P}}_m(Y \leq y \mid F_X) = F_X(y), \quad y \in \mathbb{R},$$

hence, in particular, isotonically calibrated, threshold calibrated, quantile calibrated, and probabilistically calibrated.

Here, $(X, Y) \sim \hat{\mathbb{P}}_m$, and $\hat{\mathbb{P}}_m$ is the empirical distribution of $(x_j, y_j)_{j=1}^m$.

- We call this a *binning procedure*.
- ► All in-sample auto-calibrated procedures are of this form.
- Choice: How is the partition constructed?

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} \times \mathbb{R}$ be exchangeable.

Let Π be constructed with a binning procedure:

Let F^z_{Xk} be the binning CDF constructed with (X₁, Y₁),..., (X_n, Y_n), (X_{n+1}, z).
 Define

$$\Pi_{\ell,X_{n+1}}(y) = \inf\{F_{X_{n+1}}^z(y) \mid z \in \mathbb{R}\}, \quad \Pi_{u,X_{n+1}}(z) = \sup\{F_{X_{n+1}}^z(y) \mid z \in \mathbb{R}\},$$

Theorem (Conformal calibration guarantee)

Predictive system contains an auto-calibrated CDF:

$$\mathcal{F}_{X_{n+1}}^{Y_{n+1}}(y)=\mathbb{P}(Y_{n+1}\leq y\mid \mathcal{F}_{X_{n+1}}^{Y_{n+1}}),\quad y\in\mathbb{R},$$

and

$$\Pi_{\ell,X_{n+1}}(y) \leq F_{X_{n+1}}^{Y_{n+1}}(y) \leq \Pi_{u,X_{n+1}}(y), \quad y \in \mathbb{R}$$

Isotonic calibration

Middle ground between probabilistic and auto-calibration

▶ Based on Isotonic Distributional Regression (IDR) (Henzi, Ziegel, and Gneiting, 2021) IDR estimator Let \leq be a partial order on \mathcal{X} .

Define $\mathbf{\hat{F}} = (F_{x_k})_{k=1}^m$ as

$$\hat{\mathbf{F}} = \operatorname*{argmin}_{F_i \preceq_{\mathrm{st}} F_j \text{ if } x_i \leq x_j} \sum_{\ell=1}^m \mathrm{CRPS}(F_\ell, y_\ell).$$

Continuous ranked probability score (CRPS)

$$CRPS(F, y) = \int_{\mathbb{R}} (F(z) - \mathbb{1}\{y \le z\})^2 dz$$

Why IDR?

- Non-parametric distributional regression procedure under order constraints
- Explicit expression for estimator available
- Implementations available (R and Python)
- Consistency results available (under regularity conditions)

Theorem (In-sample isotonic calibration of IDR) IDR is in-sample isotonically calibrated, that is,

$$\hat{\mathbb{P}}_m(Y > y \mid \mathcal{A}(F_X^Y)) = 1 - F_X^Y(y), \quad y \in \mathbb{R},$$

and hence, in particular, threshold calibrated, quantile calibrated, and probabilistically calibrated. Here, $(X, Y) \sim \hat{\mathbb{P}}_m$, and $\hat{\mathbb{P}}_m$ is the empirical distribution of $(x_j, y_j)_{j=1}^m$.

Henzi, Ziegel, and Gneiting (2021); Arnold and Ziegel (2025)

Choice: How is the partial order on X constructed?

Why IDR?

- Non-parametric distributional regression procedure under order constraints
- Explicit expression for estimator available
- Implementations available (R and Python)
- Consistency results available (under regularity conditions)

Theorem (In-sample isotonic calibration of IDR) IDR is in-sample isotonically calibrated, that is,

$$\hat{\mathbb{P}}_m(Y > y \mid \mathcal{A}(F_X^Y)) = 1 - F_X^Y(y), \quad y \in \mathbb{R},$$

and hence, in particular, threshold calibrated, quantile calibrated, and probabilistically calibrated. Here, $(X, Y) \sim \hat{\mathbb{P}}_m$, and $\hat{\mathbb{P}}_m$ is the empirical distribution of $(x_j, y_j)_{j=1}^m$.

Henzi, Ziegel, and Gneiting (2021); Arnold and Ziegel (2025)

Choice: How is the partial order on X constructed?

Why IDR?

- Non-parametric distributional regression procedure under order constraints
- Explicit expression for estimator available
- Implementations available (R and Python)
- Consistency results available (under regularity conditions)

Theorem (In-sample isotonic calibration of IDR) IDR is in-sample isotonically calibrated, that is,

$$\hat{\mathbb{P}}_m(Y > y \mid \mathcal{A}(F_X^Y)) = 1 - F_X^Y(y), \quad y \in \mathbb{R},$$

and hence, in particular, threshold calibrated, quantile calibrated, and probabilistically calibrated. Here, $(X, Y) \sim \hat{\mathbb{P}}_m$, and $\hat{\mathbb{P}}_m$ is the empirical distribution of $(x_j, y_j)_{j=1}^m$.

Henzi, Ziegel, and Gneiting (2021); Arnold and Ziegel (2025)

Choice: How is the partial order on X constructed?

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} \times \mathbb{R}$ be exchangeable.

Let Π be constructed with IDR (*conformal IDR*):

Let F^z_{Xk} be the IDR CDF computed from (X₁, Y₁),..., (X_n, Y_n), (X_{n+1}, z).
 Define

$$\Pi_{\ell,X_{n+1}}(y) = \inf\{F_{X_{n+1}}^z(y) \mid z \in \mathbb{R}\}, \quad \Pi_{u,X_{n+1}}(z) = \sup\{F_{X_{n+1}}^z(y) \mid z \in \mathbb{R}\},$$

Theorem (Conformal calibration guarantee)

Predictive system contains an isotonically calibrated CDF:

$${\mathcal F}_{X_{n+1}}^{Y_{n+1}}(y)=1-{\mathbb P}(Y_{n+1}>y\mid {\mathcal A}({\mathcal F}_{X_{n+1}}^{Y_{n+1}})),\quad y\in{\mathbb R},$$

and

$$\Pi_{\ell,X_{n+1}}(y) \leq F_{X_{n+1}}^{Y_{n+1}}(y) \leq \Pi_{u,X_{n+1}}(y), \quad y \in \mathbb{R}$$

Comments

- Conformal guarantee does not depend of any isotonicity assumption.
- The partial order on X can be estimated on the same sample (computational challenge! "full conformal") or on an independent sample ("split conformal").

Thickness of predictive systems

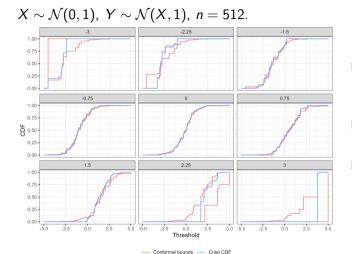
Predictive systems are only useful if they are thin.

Classical conformal predictive systems:

• Thickness is 1/(n+1).

- Auto-calibration: Binning procedures, where bins are determined only based on X₁,..., X_{n+1} (example: k-means clustering):
 - Thickness is 1/(size of bin containing n+1).
- Isotonic calibration with IDR:
 - Expected thickness is less or equal to $14n^{-1/6}$.

Tiny simulation example for conformal IDR



 Principled approach to choose a crisp conformal IDR.

- Expected thickness goes to zero asymptotically.
- Thickness of conformal IDR informs about epistemic uncertainty.

Aleatoric and epistemic uncertainty

Aleatoric uncertainty

Aleatoric uncertainty of future outcome Y is fully described by

 $\mathcal{L}(Y \mid X).$

Uncertainty remains even with infinite amounts of data (X_i, Y_i) .

Epistemic uncertainty (second order probabilities, ambiguity, ...)

Uncertainty due to our approximation of $\mathcal{L}(Y \mid X)$ based on limited data, limited knowledge of data generating process, parameter estimation, Uncertainty goes away if we have infinite amounts of data.

▶ With IDR we recover $\mathcal{L}(Y \mid \mathcal{A}(X))$.

Aleatoric and epistemic uncertainty

Aleatoric uncertainty

Aleatoric uncertainty of future outcome Y is fully described by

 $\mathcal{L}(Y \mid X).$

Uncertainty remains even with infinite amounts of data (X_i, Y_i) .

Epistemic uncertainty (second order probabilities, ambiguity, ...)

Uncertainty due to our approximation of $\mathcal{L}(Y \mid X)$ based on limited data, limited knowledge of data generating process, parameter estimation, Uncertainty goes away if we have infinite amounts of data.

• With IDR we recover $\mathcal{L}(Y \mid \mathcal{A}(X))$.

Aleatoric and epistemic uncertainty

Aleatoric uncertainty

Aleatoric uncertainty of future outcome Y is fully described by

 $\mathcal{L}(Y \mid X).$

Uncertainty remains even with infinite amounts of data (X_i, Y_i) .

Epistemic uncertainty (second order probabilities, ambiguity, ...)

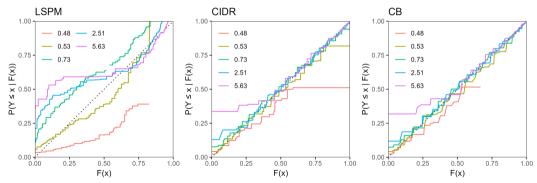
Uncertainty due to our approximation of $\mathcal{L}(Y \mid X)$ based on limited data, limited knowledge of data generating process, parameter estimation, Uncertainty goes away if we have infinite amounts of data.

• With IDR we recover $\mathcal{L}(Y \mid \mathcal{A}(X))$.

Case study: Length of stay in intensive care units

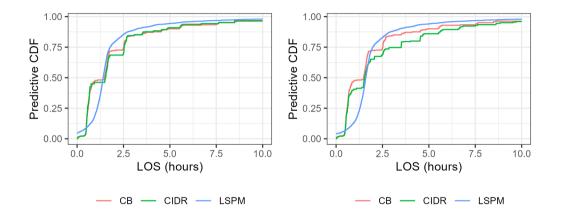
Predictions for individual patients' length of stay in ICU's in Switzerland 24h after admission¹

Threshold calibration



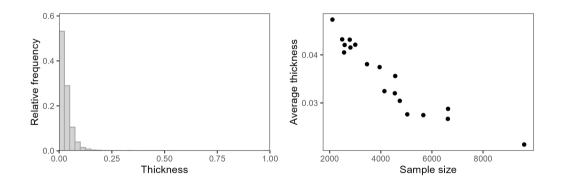
¹ Data provided by G.-R. Kleger and Schweizerische Gesellschaft für Intensivmedizin. Data is internal hospital data and not publicly available 😑 🕫 ۹ 🔍

Examples of predictive cdfs



▲□▶▲圖▶▲≣▶▲≣▶ ≣目 のQで

Epistemic uncertainty assessment with conformal IDR



・ロト・(四ト・(ヨト・(ヨト・(ロト)))
・のの(で)
・

Summary

- In-sample calibration yields conformal calibration guarantees.
- Strong out-of-sample calibration guarantees are possible.
- Arguments can be extended to distribution shifts.
- Conformal binning is simple but works well.
 Only example explored so far: k-means clustering.
- Conformal IDR allows to quantify epistemic uncertainty, since IDR converges to a well-understood limiting object.
- ▶ Outlook: Conformal calibration guarantees for point predictions.

Outlook: Conformal calibration guarantees for point predictions

► $Y \in \mathbb{R}$.

• Claim size. $(Y \in [0, \infty) \subseteq \mathbb{R})$

- ► Point prediction for *Y*:
 - Single valued "best guess" $Z \in \mathcal{Y}$.
 - ▶ Does not quantify uncertainty, but maybe useful/necessary e.g. for pricing.
 - lf X is information available for prediction, often, Z should approximate $\mathbb{E}[Y \mid X]$.

Definition

A prediction $Z\in\mathbb{R}$ for $Y\in\mathbb{R}$ is expectation-calibrated if

$$\mathbb{E}[Y \mid Z] = Z.$$

Conformal calibration guarantee: Construct (a small) set C_{n+1} such that

$$\mathbb{P}\big(\mathbb{E}[Y_{n+1} \mid Z_{n+1}] \in \mathcal{C}_{n+1}\big) \ge 1 - \alpha.$$

Outlook: Conformal calibration guarantees for point predictions

► $Y \in \mathbb{R}$.

• Claim size. $(Y \in [0, \infty) \subseteq \mathbb{R})$

- ► Point prediction for *Y*:
 - Single valued "best guess" $Z \in \mathcal{Y}$.
 - ▶ Does not quantify uncertainty, but maybe useful/necessary e.g. for pricing.
 - ▶ If X is information available for prediction, often, Z should approximate $\mathbb{E}[Y \mid X]$.

Definition

A prediction $Z \in \mathbb{R}$ for $Y \in \mathbb{R}$ is *expectation-calibrated* if

$$\mathbb{E}[Y \mid Z] = Z.$$

Conformal calibration guarantee: Construct (a small) set C_{n+1} such that

$$\mathbb{P}\big(\mathbb{E}[Y_{n+1} \mid Z_{n+1}] \in \mathcal{C}_{n+1}\big) \ge 1 - \alpha.$$

Outlook: Conformal calibration guarantees for point predictions

► $Y \in \mathbb{R}$.

• Claim size. $(Y \in [0, \infty) \subseteq \mathbb{R})$

- Point prediction for Y:
 - Single valued "best guess" $Z \in \mathcal{Y}$.
 - ▶ Does not quantify uncertainty, but maybe useful/necessary e.g. for pricing.
 - ▶ If X is information available for prediction, often, Z should approximate $\mathbb{E}[Y \mid X]$.

Definition

A prediction $Z \in \mathbb{R}$ for $Y \in \mathbb{R}$ is *expectation-calibrated* if

$$\mathbb{E}[Y \mid Z] = Z.$$

Conformal calibration guarantee: Construct (a small) set C_{n+1} such that

$$\mathbb{P}\big(\mathbb{E}[Y_{n+1} \mid Z_{n+1}] \in \mathcal{C}_{n+1}\big) \geq 1 - \alpha.$$

References

- S. Allen, G. Gavrilopoulos, A. Henzi, G.-R. Kleger, and J. Ziegel. In-sample calibration yields conformal calibration guarantees. *Preprint, arXiv: 2503.03841*, 2025a.
- S. Allen, J. Koh, J. Segers, and J. Ziegel. Tail calibration of probabilistic forecasts. *Journal of the American Statistical Association*, 2025b. To appear.
- S. Arnold and J. Ziegel. Isotonic conditional laws. Bernoulli, 31:1140-1159, 2025.
- T. Dimitriadis, T. Gneiting, and A. I. Jordan. Stable reliability diagrams for probabilistic classifiers. *Proceedings of the National Academy of Sciences*, 118: e2016191118, 2021.
- A. Henzi, J. F. Ziegel, and T. Gneiting. Isotonic distributional regression. *Journal of the Royal Statistical Society: Series B*, 85:963–993, 2021.
- R. Ranjan and T. Gneiting. Combining probability forecasts. *Journal of the Royal Statistical Society: Series B*, 72:71–91, 2010.

Thank you!

Why the CRPS?

It is a strictly proper scoring rule.

If $Y \sim F$ and G is any other CDF, then S(F, y) is strictly proper if $\mathbb{E}_F S(F, Y) \leq \mathbb{E}_F S(G, Y)$

with equality if and only if F = G.

Example 1

If F, G have finite mean, then the CRPS

$$CRPS(F, Y) = \int_{\mathbb{R}} (F(z) - \mathbb{1}\{Y \le z\})^2 dz$$

is strictly proper.

Example 2 If *F*, *G* have densities *f*, *g*, then the logarithmic score

$$S_{\log}(F,y) = -\log f(y)$$

is strictly proper.

Why the CRPS?

It is a strictly proper scoring rule.

If $Y \sim F$ and G is any other CDF, then S(F, y) is strictly proper if

 $\mathbb{E}_{F}S(F,Y) \leq \mathbb{E}_{F}S(G,Y)$

with equality if and only if F = G.

Example 1

If F, G have finite mean, then the CRPS

$$\mathsf{CRPS}(F,Y) = \int_{\mathbb{R}} \left(F(z) - \mathbb{1}\{Y \leq z\}\right)^2 \, \mathrm{d}z$$

is strictly proper.

Example 2 If *F*, *G* have densities *f*, *g*, then the logarithmic score

$$S_{\log}(F,y) = -\log f(y)$$

is strictly proper.

Why the CRPS?

It is a strictly proper scoring rule.

If $Y \sim F$ and G is any other CDF, then S(F, y) is strictly proper if

 $\mathbb{E}_{F}S(F,Y) \leq \mathbb{E}_{F}S(G,Y)$

with equality if and only if F = G.

Example 1

If F, G have finite mean, then the CRPS

$$CRPS(F, Y) = \int_{\mathbb{R}} (F(z) - \mathbb{1}{Y \le z})^2 dz$$

is strictly proper.

Example 2

If F, G have densities f, g, then the logarithmic score

$$S_{\log}(F,y) = -\log f(y)$$

is strictly proper.

Mathematical setup

"If the covariate increases we expect an increase of the outcome."

$$\begin{aligned} x \leq x' \implies \mathcal{L}(Y \mid X = x) \preceq_{\text{st}} \mathcal{L}(Y \mid X = x') \\ \iff F_{Y \mid X = x}(y) \geq F_{Y \mid X = x'}(y), \quad y \in \mathbb{R} \\ \iff q_{\alpha}(Y \mid X = x) \leq q_{\alpha}(Y \mid X = x'), \quad \alpha \in (0, 1) \end{aligned}$$

IDR estimator (for $x \in \mathbb{R}$): Data $(x_i, y_i)_{i=1}^n$, $x_1 < \cdots < x_n$ Define $\hat{\mathbf{F}} = (\hat{F}_i)_{i=1}^n = (\hat{F}_{Y|X=x_i})_{i=1}^n$ as

$$\hat{\mathbf{F}} = \operatorname*{argmin}_{F_1 \preceq_{\mathrm{st}} \cdots \preceq_{\mathrm{st}} F_n} \sum_{\ell=1}^n \mathrm{CRPS}(F_\ell, y_\ell)$$

Continuous ranked probability score (CRPS)

$$CRPS(F, Y) = \int_{\mathbb{R}} (F(z) - \mathbb{1}\{Y \le z\})^2 dz$$

・ロト・日本・日本・日本・日本・シャウト

Mathematical setup

"If the covariate increases we expect an increase of the outcome."

$$\begin{aligned} x \leq x' \implies \mathcal{L}(Y \mid X = x) \preceq_{\text{st}} \mathcal{L}(Y \mid X = x') \\ \iff F_{Y \mid X = x}(y) \geq F_{Y \mid X = x'}(y), \quad y \in \mathbb{R} \\ \iff q_{\alpha}(Y \mid X = x) \leq q_{\alpha}(Y \mid X = x'), \quad \alpha \in (0, 1) \end{aligned}$$

IDR estimator (for $x \in \mathbb{R}$): Data $(x_i, y_i)_{i=1}^n$, $x_1 < \cdots < x_n$ Define $\hat{\mathbf{F}} = (\hat{F}_i)_{i=1}^n = (\hat{F}_{Y|X=x_i})_{i=1}^n$ as $\hat{\mathbf{F}} = \underset{F_1 \preceq_{st} \cdots \preceq_{st} F_n}{\operatorname{argmin}} \sum_{\ell=1}^n \operatorname{CRPS}(F_\ell, y_\ell).$

Continuous ranked probability score (CRPS)

$$CRPS(F, Y) = \int_{\mathbb{R}} (F(z) - \mathbb{1}{Y \le z})^2 dz$$

・ロ・・日・・ヨ・・日・ シック・

Then

$$\hat{F}_{Y|X=x_i} = \hat{F}_i(y) = \max_{j=i,...,n} \min_{k=1,...,j} \frac{1}{j-k+1} \sum_{\ell=k}^j \mathbb{1}\{y_\ell \le y\}.$$

*F̂*₁(y),..., *F̂*_n(y) is the antitonic regression of the binary outcomes
 1{y₁ ≤ y},..., 1{y_n ≤ y}.

