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Motivation

Importance of proactive risk management: Highlighted by the
Covid–19 pandemic, the 2008 financial crisis, and shocks in the
economy.

Address rare risk focus: Identify, measure, and mitigate to avoid
financial ruin.

Heavy–tailed patterns: Highly rare events occur when data exhibits
heavy–tail distribution.
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Motivation

Our Approach:

Integrating risk–averse policy gradient RL and EVT for tail risk
optimisation to mitigate catastrophic risks.
EVT: Focuses on modelling rare events.
First to integrate these two methods.

Evaluation:

Simulated data from heavy tailed distributions,
Address a hedging problem when options are very expensive.
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Related work – I

Recent interest in RL: risk–sensitive RL, integrating risk
considerations into reinforcement learning (RL).

Survey by Prashanth et al. (2022) categorizes risk–sensitive RL
techniques into two settings:

1. Maximising returns while considering risk as a constraint.
2. Directly incorporating risk as an objective in the optimisation process.

In the second setting, the agent aims to minimize risks due to the
stochastic environment, leading to a risk–averse RL method.
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Related work – II

Various risk measurement methods in risk–sensitive RL:

Mean–variance: La and Ghavamzadeh (2013) and Tamar et al.
(2012).

Cumulative prospect theory: Prashanth et al. (2016) and Jie et al.
(2018).

Percentile performance: Chow et al. (2018).

CVaR: Policy gradient is the most popular approach for CVaR
optimisation in RL (Greenberg et al., 2022).
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Related work – III

In previous papers CVaR is usually estimated by the sample average.

Troop et al. (2022): Estimate CVaR by EVT, integrating with
risk–averse multi–armed bandit problem.

Bader et al. (2018): EVT with automated threshold selection method.
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Risk measures: VaR and CVaR

Value at Risk (VaR)

Let X denote a random loss. VaR at confidence level α is calculated as:

VaRα(X ) = inf{x ∈ R|FX (x) ≥ α}, (1)

where FX is the cumulative distribution function (CDF) of X .

Conditional Value at Risk (CVaR)

Assume that X is absolutely continuous. The CVaR of X at confidence
level α is given by

CVaRα(X ) = E[X |X ≥ VaRα(X )] =
1

1− α

∫ 1

α
VaRγ(X )dγ. (2)
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Sample average – I

Estimating methods for CVaR: Sample average (SA) and Extreme value
theory (EVT)

Sample average (SA): Empirical average of exceedance above a
threshold.

ĈVaRα,n(x) =

∑n
i=1 Xi1{Xi≥q̂α,n}∑n
j=1 1{Xj≥q̂α,n}

, (3)

where q̂α,n(X ) represents the empirical distribution quantiles.
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Sample average – II

Cons: Imprecise estimates when α is close to 1. This is particularly
apparent in heavy–tailed distributions.

(a) Pareto distribution (b) Normal distribution
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Extreme value theory – I

EVT: Fisher–Tippett’s and Pickands–Balkema–de Haan’s theorems provide
a practical method to approximate CVaR, see McNeil et al. (2015):

ĉu,α =


u + σ̂u

1−ξ̂u

(
1 + 1

ξ̂u

[(
1−F̂ (u)
1−α

)ξ̂u
− 1

])
, if ξ ̸= 0,

u + σ̂u

[
log
(
1−F̂ (u)
1−α

)
+ 1
]
, if ξ = 0,

(4)

where (ξ̂, σ̂) represents the MLE parameter estimates, and α denotes the
confidence level such that α > F̂ (u).
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Extreme value theory – II

Selecting a suitable threshold u is a challenging problem in EVT.

Bader et al. (2018) automated threshold selection:

Choose a fixed set of candidate thresholds u1 < ... < uk .
There are ki excess samples over each threshold.
Anderson–Darling (AD) statistic:

H
(i)
0 : The distribution of the ni exceedances above ui follows a GPD.
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RL and risk averse policy gradient

Reinforcement learning has achieved substantial attention in finance:

Option pricing and hedging.

Portfolio optimisation.

Robo–advising.

For a comprehensive overview, see Hambly et al. (2023).
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Markov decision process (MDP) – I

For a definition of MDP refer to Puterman (2014):

Markov decision process (MDP)

MDP involves a tuple (S, A, R, P, γ) where

1 S is a state space,

2 A is an action space,

3 R is the set of rewards,

4 P is the matrix of transition probabilities between states
characterizing the evolution of states and rewards:

P : S× R× S× A → [0, 1],

5 γ is a discount factor.

José Garrido (Concordia U., Montreal) Risk-Averse Policy Gradient for Tail Risk June 19–20, 2025 18 / 41



Markov decision process – II

How does a MDP work?

The agent–environment interaction (Sutton and Barto, 2018).

he agent follows policy π to choose an actions.

This leads to the following sequence: S0,A0,R1,S1,A1,R2,S2,A2, . . ..

Main goal of RL: Find the optimal policy to optimise the objective
function (reward/risk).
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Risk averse policy gradient method

Risk averse policy gradient method: Directly finds the optimal policy.

The optimal policy is approximated using a parameterised policy with
parameters θ ∈ Rd .

Objective: Minimise J(θ) : θ → R.

θ∗ = argmin
θ∈Θ

J(θ). (5)

This is addressed using a stochastic gradient descent method.
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Simulated data

Simplified problem:

One–dimensional policy and single action.
Given distribution for the cost: GPD or Burr distribution.
Parametric relationship between cost and action (policy).
The agent following a policy, selects an action that incurs 2000
independent cost.
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Problem description

Risk–averse policy gradient method:

To find the optimal policy.
Objective function: CVaR.
Employs EVT with automated threshold selection for CVaR estimation.
Finite differences for CVaR gradient estimation:

∇̂J(θ) ≈ Ĵ(θ + ϵ)− Ĵ(θ)

ϵ
, where ϵ > 0.

Estimating gradient of the estimated CVaR.

α = 0.998.
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Generalized Pareto distribution (GPD)

gξ,σ,µ(x) =

 1
σ

(
1 + ξ(x−µ)

σ

)−1
ξ
−1

, if ξ ̸= 0,

1
σ e

−(x−µ)
σ , if ξ = 0.

With parameters: shape (ξ), scale (σ), and location (µ).

As the scale σ decreases, the density becomes lighter–tailed, so CVaR
decreases.

In our case, µ = 0, ξ > 0 are fixed, and σ is considered a function of the
action (policy).
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Burr

fc,d(x) = cd
xc−1

(1 + xc)d+1

Characterised by two shape parameters c > 0 and d > 0.

As c decreases, the density becomes lighter–tailed, so CVaR decreases.

In our case, d is predefined and c is considered a function of the action
(policy).
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Experimental results for the GPD distribution – I

(c) ξ = 0.4 (d) ξ = 0.6 (e) ξ = 0.8

Policy convergence for the GPD distribution.

(f) ξ = 0.4 (g) ξ = 0.6 (h) ξ = 0.8

CVaR gradient convergence for the GPD distribution.
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Experimental results for the GPD distribution – II

(i) ξ = 0.4 (j) ξ = 0.6 (k) ξ = 0.8

CVaR convergence for the GPD distribution.
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Experimental results for the Burr distribution

(l) (m) (n)

(o) (p) (q)

Left: Policy, Middle: CVaR, Right: CVaR gradient
convergence for the Burr distribution when d = 20, 40. .
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Delta–gamma hedging – I

Hedging: Offset potential losses by taking an opposite position in a
related assets.

Delta: Option price sensitivity to the underlying asset’s price, S .

Gamma: Second–order sensitivity of option price to S .

Hedging error:

Hedging error = max(ST − K , 0)− VT ,

where VT is the portfolio value at time T .
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Delta–gamma hedging – II

Rolling options strategy:

Close and open positions at the beginning and end of each period.
Gamma hedge option C on stock S using stock S and option D.
The replication portfolio includes θs shares of S , θD of option D on S ,
and cash: {

Cashi : Vi − (θsi Si + θDi D
b
i ),

Vi+1 : θsi Si+1 + θDi D
e
i+1 + Cashi e

rdt ,
(6)

where De is the option price at the end, and Db is the option price at
the beginning.
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Market set–up

Gamma hedging an at-the-money European call option (short
position):

with k = S0 = 1000, T = 0.5, µ = 0.1, σ = 0.25, and r = 0.02.

Exponential normal inverse Gaussian (NIG)–Lévy model:

St = S0e
∑t

k=1 Zk , (7)

Bt = ert , (8)

where Zk is a NIG–Lévy process.

NIG distribution: A class of Lévy processes with semi–heavy tails.
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Problem description – I

Challenge:

Options are more expensive here than usual, so costly to fully gamma
hedge.

Fully gamma hedge, it is not optimal to minimise CVaR of hedging
error.

Solution:

Hedge a portion (K%) of the gamma.

Method:

Find the optimal K (policy):

min
k

CVaRα(CT − V k
T ), (9)

Estimate CVaR: EVT with automated threshold selection and SA.
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Problem description – II

Increase options cost in Exponential NIG–Lévy Model, simulate paths
with parameters:

α = 15, β = −10.8, δ = 1, and µ = 6.7× 10−3.

Simulate 1000 and 2000 weekly paths of NIG Lévy process for
underlying stock S .

Rolling–over strategy on ATM European call option with T = 0.1 on
S .
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Evaluation

CVaRα(CT − V k
T ) with respect to 500 values of k ∈ (0, 1)
for 1,000,000 weekly paths

k CVaR

0.565130 27.088763
Optimal values of policy k and minimum CVaR
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Risk–averse policy gradient experiment

(r) Policy k, n = 1000 (s) Min CVaR, n = 1000

(t) Policy k, n = 2000 (u) Min CVaR, n = 2000

RMSE of convergence of policy k and corresponding minimum CVaR
for two different values of n.
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Conclusions

Integrated policy gradient RL and EVT for tail risk optimisation to
mitigate catastrophic risks.

Experimental results show risk assessment for very extreme events are
unstable, we still have some estimated risk error.

We able to identify the optimal policy parameter. Also, the
approximations of the gradient of the estimated CVaR, with respect
to policy, converge.

Less sample data: EVT outperforms SA in heavy–tail distributions for
large α.
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