The influence of climate change on insurance sustainability: Evidence from Spanish agricultural insurance

José Luis Vilar Zanón Nan Zhou

Department of Financial and Actuarial Economics & Statistics Complutense University of Madrid - UCM

COMPLUTENSE

Insurance Data Science Conference - London - 2025/06/19-20

Nan Zhou.

José Luis Vilar Zanón

Goals	Climate data	Claim data	Methodology		Conclusions	References
Cor	ntent					

Goals

- 2 Climate data
- 3 Claim data
- Methodology
- 5 Spain-wise
- Province-wise
- Conclusions
- 8 References

- Measure and quantify climate change in the Iberian Peninsula at different scales, countries, regions, and provinces.
 → IACI → SACI → pSACI.
- **2** Pick one line of business (wine grapes) and one risk (hailstorm).
- Study the impact of climate change on crop insurance business sustainability.
 - Assess the impact of climate change on premiums \rightarrow Using SACI and regressions models.
 - Assess the impact of climate change on the Solvency Capital Requirement (SCR) \rightarrow Using SACI and quantile regression models for high quantiles (e.g., 99th percentile)
 - Finally, Assess geographical heterogeneity of that impact → Using pSACI and mixed models (linear regression & quantile regression).

Goals	Climate data	Claim data	Methodology		Conclusions	References
Con	itent					

Coals

- 2 Climate data
 - 3 Claim data
 - Methodology
 - 5 Spain-wise
 - **D** Province-wise
 - Conclusions
 - 8 References

Climate Data Bases

The IACI building-blocks are 6,526 cells that approximate the Iberian Peninsula:

- Each cell is $0.1^\circ x 0.1^\circ$ ($\approx 123.2 Km^2$) from 36° to 47.7° lat.N., from -9.5° to 3.3° long. E.
- In each cell data from ERA5-Land reanalysis, and Permanent Service for Mean Sea Level(for sea levels) are downloaded to feed the formulae. Monthly data.
- These data are combined to calculate **mean values** over **time** and/or **space** and replaced in the index components.

Spanish Actuarial Climate Index (SACI)

SACI 1991-2024

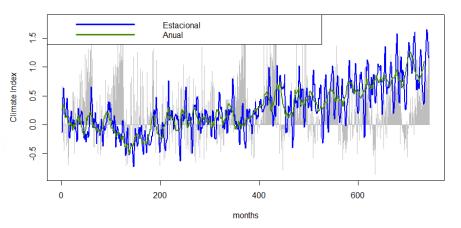
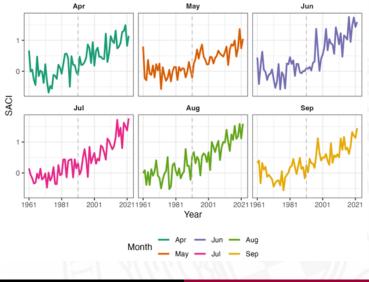



Figure: SACI from 1991 to 2022, 3 and 12 months moving averages

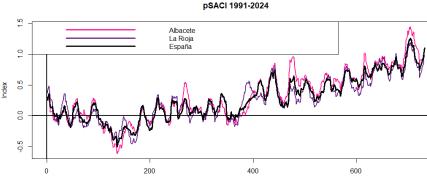
Conclusions Evolution of SACI over Hailstorm Relevant Months (1961–2021)

J.L. Vilar-Zanón Universidad Complutense de Madrid

als Climate data

Claim data

Methodology


Spain-wise

Province-wis

Conclusions

References

Spanish Actuarial Climate Index (pSACI)

months

Figure: pSACI 1991-2022 for 2 provinces. 12-month moving average. Detail of spatial heterogeneity.

Goals	Climate data	Claim data	Methodology		Conclusions	References
Con	tent					

D Goals

- 2 Climate data
- Claim data
 - Methodology
 - 5 Spain-wise
 - **D** Province-wise
 - Conclusions
 - 8 References

Goals Climate data

Claim data

Methodology

Spain-wise

Province-wis

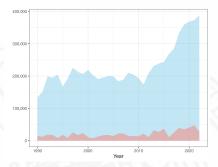
Conclusion

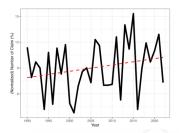
References

Wine grapes hailstorm claims dataset

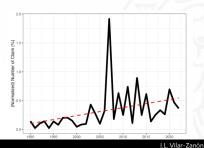
Supplied by $\mathsf{Agroseguro}^1$

- Time Span:
 - 1990-2022
- Coverage:
 - 49 provinces / 240 regions
 - 893,144 annual policies (avg)
- Data Scale:
 - 7,547,286 records
 - 692,733 claims

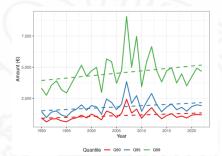



Figure: Yearly numbers of plots (blue) and claims (pink) over time.

 $^1 \mbox{\it Agroseguro}$ is the Spanish coinsurance pool of agricultural insurance, consisting of 17 insurance companies.

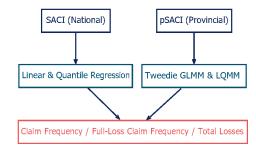

Wine grapes hailstorm claims dataset

Normalized Number of claims N


Clair

Normalized loss costs=1 LC1

Normalized loss quantiles L



Goals	Climate data	Claim data	Methodology		Conclusions	
Con	ntent					

D Goals

- 2 Climate data
- 3 Claim data
- Methodology
 - 5 Spain-wise
 - Province-wise
 - Conclusions
 - 8 References

• We use SACI / pSACI / components as the independent variables.

• N, LC1, and L as the dependent variables

Coals Climate data Claim data Methodology Spain-wise Province-wise Conclusions R Explained Variables: Monthly Claim frequency and losses

Claim Frequency

• Normalized monthly number of claims, N

$$N = \frac{\text{Monthly claim count}}{\text{Annual plot count}}$$

• Normalized monthly number of full-loss claims (i.e. losses = insured capital), LC1

Loss Severity

Homogenized monthly total loss, L

Goals	Climate data	Claim data	Methodology	Spain-wise	Conclusions	References
Con	tent					

Coals

- 2 Climate data
- 3 Claim data
- Methodology
- 5 Spain-wise
 - Province-wise
 - Conclusions
 - 8 References

Coals Claim data Methodology Spain-wise Province-wise Conclusions References Spanish-wise goals achievement (Losses)

Data

- Monthly SACI / It's components, 1990–2022
- National hailstorm insurance metrics: Claim Frequency (N), Full-Loss Frequency (LC1), Monthly Losses (L)

Models

• Linear regression — estimates mean effects

 $E(Y) = \beta_0 + \beta_1 X_1 + \dots + \beta_n X_n \qquad Y \in \{N, LC1, \log(L)\}$

• Quantile regression (90th /95th / 99th) — captures tail behaviour

 $Q_{\tau}(Y|X) = X\beta_{\tau},$

Remember:

$$Q_{\log(L)}(\tau|X=x) = \log\left(Q_L(\tau|X=x)\right),$$

(1)

Key finding. A 0.1-point increase in the Spanish Actuarial Climate Index (SACI) lifts

- the expected monthly hail-losses by $\approx 9\%~(\beta=0.878,~e^{0.1\beta}=1.091);$
- the 99th-percentile (VaR) losses by $\approx 6\%$ ($\hat{\beta}_{0.99} = 0.619, e^{0.1\hat{\beta}_{0.99}} = 1.064$).

Economic magnitude. Within the 2022 SACI range (1.05 in May–1.76 in July), these elasticities imply

 $\Delta E(L) \approx 0.22 - 0.30 \,\mathrm{M} \epsilon, \qquad \Delta \mathrm{VaR}_{0.99} \approx 0.81 - 1.38 \,\mathrm{M} \epsilon.$

Role of seasonality. Monthly dummies remain material. Moving from May to July increases losses by

 $\%\Delta L = \left(e^{\Delta \mathsf{SACI} \cdot \beta + \Delta \mathsf{Month}} - 1\right) \times 100\% \approx 37\%$

highlighting that SACI and seasonal factors jointly drive hailstorm exposure.

Goals	Climate data	Claim data	Methodology	Province-wise	Conclusions	References
Cor	ntent					

D Goals

- 2 Climate data
- 3 Claim data
- Methodology
- **5** Spain-wise
- 6 Province-wise
 - Conclusions
 - 8 References

• Regions Analyzed:

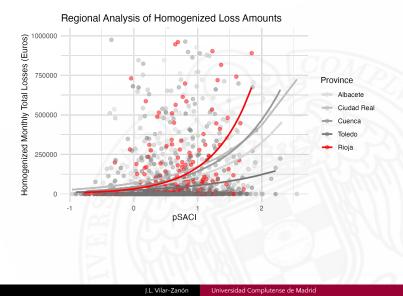
- La Rioja, Albacete, Ciudad Real, Cuenca, Toledo
- Method:
 - **Tweedie GLMM:** Captures mean effects under mixed distribution (zero-inflated + continuous)

$$Y_{ij} \sim \mathsf{Tweedie}(\mu_{ij}, \phi, p)$$

 $\log \mu_{ij} = \beta_0 + u_j + (\beta_1 + v_j) \mathsf{pSACl}_i,$

• LQMM: Assesses effects at high quantiles of total loss (e.g., 95th/99th)

 $Q_{\tau} \left(\log L_{ij} \right) = \beta_0(\tau) + u_j(\tau) + \left[\beta_1(\tau) + v_j(\tau) \right] \mathsf{pSACI}_{ij} \qquad \tau \in \{0.90, 0.95, 0.99\}$


Province-Specific Random Effects and Adjusted Coefficients (Total Monthly Losses)

Province	Random	Effects	Adjusted Coefficients		
	Intercept	pSACI	Intercept	pSACI	
Albacete	0.0039	-0.0714	10.5897	1.0517	
Ciudad Real	0.5448	-0.1968	11.1306	0.9263	
Cuenca	0.1114	0.0553	10.6971	1.1784	
Toledo	-0.4993	-0.3101	10.0865	0.8130	
La Rioja	-0.1806	0.5122	10.4051	1.6353	

Table: Selected provincial random effects and adjusted coefficients for homogenised total losses (*L*). Adjusted values incorporate $\beta_0 = 10.59$ and $\beta_1 = 1.12$.

Nonlinear Relationship: pSACI and Insurance Losses

Province-wise

Coals Climate data Claim data Methodology Spain-wise Province-wise Conclusions References pSACI Extremes and Expected Monthly Losses (2022)

Provincial extremes of pSACI and expected losses

Province	Max.	pSACI	Min.	Min. pSACI		
	pSACI	Loss (€)	pSACI	Loss (€)		
Albacete	2.02	332,759	-0.02	38,977		
Ciudad Real	1.91	399,108	-0.17	58,555		
Cuenca	2.25	623,250	-0.09	39,638		
La Rioja	1.72	548,254	-0.15	25,971		
Toledo	1.64	91,178	-0.23	19,888		

- Cuenca: €0.04 M → €0.62 M (+15×) as pSACI jumps from -0.09 to 2.25.
- La Rioja also highly sensitive (€0.52 M swing).
- Toledo least sensitive; peak loss < €0.1 M.
- pSACI elasticity differs sharply across provinces ⇒ pricing and capital must be regional.

Spain-wise

Province-wise

Conclusions

References

Province-Specific Random Effects and Adjusted Coefficients for 99th-Percentile Total Losses

Province	Random	Effects	Adjusted Coefficients		
	Intercept	pSACI	Intercept	pSACI	
Albacete	7.5901	0.6542	13.2018	1.7909	
Ciudad Real	7.7040	0.6457	13.3157	1.7824	
Cuenca	7.7122	0.7513	13.3238	1.8880	
Toledo	6.8817	0.5018	12.4934	1.6386	
La Rioja	7.3522	0.8503	12.9639	1.9870	

Table: Random effects and adjusted provincial coefficients for the intercept and pSACI slope at the 99th percentile. Adjusted coefficients combine fixed and random components, highlighting geographical differences in climate sensitivity.

Claim data

Methodology

Spain-wise

rovince-wise

Conclusions

References

pSACI Extremes and 99th Quantile Losses (2022)

Provincial extremes of pSACI and 99th quantile monthly losses

Province		Max. pS/	ACI		Min. pSACI			
	pSACI	$\log L$	L _{0.99} (€)	pSACI	$\log L$	L _{0.99} (€)		
Albacete	2.02	16.82	2.02×10^{7}	-0.02	13.17	5.23×10^{5}		
Ciudad Real	1.91	16.71	1.81×10^7	-0.17	13.02	4.51×10^5		
Cuenca	2.25	17.56	4.23×10^7	-0.09	13.15	5.14×10^5		
La Rioja	1.72	16.38	1.30×10^7	-0.15	12.67	3.18×10^5		
Toledo	1.64	15.18	3.91×10^6	-0.23	12.11	3.18×10^5		

• Cuenca: 99 %-VaR jumps from €0.5 M to €42 M—an 80-times increase.

- Albacete Ciudad Real exceed €18 M in high-pSACI months (35 × baseline).
- Extreme losses escalate far faster than means ⇒ solvency capital and reinsurance layers must scale with provincial pSACI levels.

Goals	Climate data	Claim data	Methodology		Conclusions	
Con	itent					

D Goals

- 2 Climate data
- 3 Claim data
- Methodology
- 5 Spain-wise
- **Description** Province-wise

8 References

- IACI and its regional indices can effectively quantify climate change in the Iberian Peninsula, especially in Spain.
- The incremental increases in the Spanish Actuarial Climate Index (SACI) are closely associated with both higher claim frequencies and more severe losses, especially in the tail of the loss distribution.
- The spatial heterogeneity of climate change demonstrates the need for province-level monetization of the effects of climate change on insurance premiums and solvency capital requirements (SCR).

Goals	Climate data	Claim data	Methodology		Conclusions	References
Cor	ntent					

- Coals
- 2 Climate data
- 3 Claim data
- Methodology
- 5 Spain-wise
- 6 Province-wise
- Conclusions
- 8 References

Goals	Climate data	Claim data	Methodology		Conclusions	References
Ref	erences					

- CCS. (2025, April). Eighteenth briefing note on the extraordinary floods caused by the DANA (cut-off low) from 26 October to 4 November.
- Munich Re. (2025, January). Climate change is showing its claws: The world is getting hotter, resulting in severe hurricanes, thunderstorms and floods.
- WMO. (2025, January). WMO confirms 2024 as warmest year on record at about 1.55°C above pre-industrial level.
- Zhou, N., Vilar-Zanón, J.-L., Garrido, J., & Mart´ınez, A.-J. (2023).On the definition of an actuarial climate index for the Iberian peninsula. Anales del Instituto de Actuarios Españoles, 29, 37–59.
- Zhou, N., & Vilar-Zanón, J. L. (2024).Impact Assessment of Climate Change on Hailstorm Risk in Spanish Wine Grape Crop Insurance: Insights from Linear and Quantile Regressions. *Risks*, 12(2), 20.
- Zhou, N., & Vilar-Zanón, J. L. (2025).Climate Change and Crop Insurance: Geographical Heterogeneity in Hailstorm Risk for Wine Grapes in Spain. European Actuarial Journal.

Methodology

Spain-wise

Province-wise

Thank you! The End

J.L. Vilar-Zanón

Universidad Complutense de Madrid