Fully Transparent Machine Learning: Exact Factor Table Representation of GBMs

Lucas Muzynoski

Avenue Analytics Insurance Data Science Conference 2025

Research Problem

In the insurance industry, we demand accurate predictive models, but they often need to be transparent and interpretable to be useful in production.

Transparency: The underlying formula for the model is fully shared. **Interpretability:** The model's calculations are reasonably understandable - stakeholders can see how it works and what factors drive predictions.

Stakeholders and regulators need to know exactly how a model works before endorsing its use.

Existing Tradeoffs

- GLMs: Transparent (standard for regulatory filings) but limited predictive power without extensive feature engineering and regularization.
- GBMs: High accuracy but historically a 'black box', posing challenges for regulatory approval and internal buy-in.
- Post-hoc methods: Provide local explanations without full model transparency.
- Distillation: Approximations with some information loss.
- EBMs: Transparent, but limited interaction search and does not promote sparsity.

A Black Box into a Glass Box:

The Challenge: How can we unlock the power of gradient boosting while maintaining complete transparency?

Making it work:

- Start with a high-performance GBM like LightGBM
- Create methods for converting and consolidating trees into factor tables, exactly
- Use novel regularization parameters for sparsity and interpretability
- Multi-objective tuning to balance performance and interpretability

Result:

- ► Factor tables! A GBM that is now transparent and interpretable
- Predictions match exactly with underlying LightGBM model
- Performance parity with state-of-the-art methods

How It Works: Tree to Factor Table Simple Example:

Tree:	Factor	Table:	
Age	Age	Vehicle	Factor
<=30: 0.2	<=30	*	0.2
>30	>30	Sedan	0.5
Sedan: 0.5	>30	SUV	-0.1
Other	>30	Truck	0.3
SUV: -0.1			

|-- Truck: 0.3

Key Point: Every tree can be converted to factor tables with *zero* information loss

Note: Every tree can be decomposed into individual node contributions, enabling us to separate main effects from interactions during consolidation

Consolidating for Interpretability

A GBM with 100+ trees would create 100+ factor tables - too many to be interpretable. We consolidate by decomposing each tree node into mini factor tables, then combining them strategically.

- Two Consolidation Strategies:
 - ANOVA-style: Separate main effects from interactions (better interpretability)
 - Full consolidation: Combine any tables where features are subsets (more compact)

Both preserve exact prediction equivalence with the underlying GBM!

Outcome: A compact set of interpretable factor tables (often 1-10) instead of 100+ trees

From GBM Ensemble to Consolidated Tables

- (e.g., 100s of decision trees)
- 1. GBM Ensemble -> 2. Individual Tree -> Tables Each tree is an exact factor table.
 - 3. Consolidated **Factor Tables** Equivalent to original GBM!

Complexity Control Methods

Research Challenge: Even with consolidation, a standard GBM can produce excessive numbers of factor tables, ruining interpretability

Complexity Control Methods

Research Challenge: Even with consolidation, a standard GBM can still produce too many factor tables

Our Solution: New regularization penalties that discourage the model from using new feature combinations

How it works:

- Penalize splits that introduce feature combinations not seen before in the ensemble
- Penalize splits that add new feature combinations within individual trees
- Automatically promotes sparsity and interpretability

Outcome: Models automatically select only a small number of features and interactions

Tuning GBMs for Performance and Interpretability Optimization Problem: $\min_{\theta \in \Theta} \{-CV(\theta), C(\theta)\}$ Two Objective Functions:

Performance: Cross-validation accuracy

Complexity: Median number of consolidated factor tables **Outcome:** A Pareto frontier of optimal hyperparameters. Choose between maximimum performance or more interpretability.

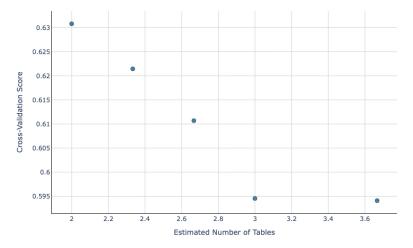


Figure 1: Pareto Frontier

Case Study 1: Recidivism Prediction

Dataset: Broward County recidivism data (ProPublica) Task: Binary classification (2-year recidivism) Benchmark: Proprietary COMPAS algorithm Key Result: 123-tree LightGBM ensemble converted to 2 factor tables (zero information loss) Experimental Results:

Method	AUC
COMPAS	0.696
Random Forest	0.676
EBM	0.728
Our Method	0.726

Finding: Competitive performance with complete model transparency

Recidivism: The Complete Model

Intercept: -0.185

 Table 1: Prior Charges × Sex (showing first 6 rows)

Prior Charges	Sex	Factor
0	Female	-1.100
<=1.5	Female	-0.496
<=2.5	Female	0.044
0	Male	-0.775
<=1.5	Male	-0.321
<=2.5	Male	0.097

22 total rows

Recidivism: Age Effects **Table 2: Age × Sex** (showing first 6 rows)

Sex	Age	Factor	
Female	<=20.5	1.417	
Female	<=21.5	1.082	
Female	<=22.5	0.857	
Male	<=20.5	1.470	
Male	<=21.5	1.136	
Male	<=22.5	0.911	

26 total rows

Manual Prediction: Look up 2 numbers, add them to the intercept, then apply the logistic function

Case Study 2: Insurance Claim Frequency

Dataset: French Motor MTPL (678,013 policies) **Task:** Poisson regression for claim frequency **Performance Comparison:**

Method	Poisson Deviance
Random Forest (100 trees)	0.690
EBM	0.599
Our Method (Interpretable)	0.593
Our Method (Best Perf.)	0.583

Insurance Factor Tables: Structure Model Configuration (Interpretable Variant):

Baseline: -2.302

Component	t Feature Set	Structure	Parameters
Table 1 Table 2 Table 3	$\begin{array}{l} \mbox{Vehicle Age} \times \mbox{Gas Type} \\ \mbox{Driver Age} \\ \mbox{Bonus-Malus} \times \mbox{Vehicle} \\ \mbox{Age} \end{array}$	VehAge, VehGas, Factor DrivAge, Factor BonusMalus, VehAge, Factor	50 25 400+

Key Advantages & Applications

What This Enables:

- Regulatory Compliance: Factor tables ready for filing, familiar to regulators
- Full Transparency: Understand exactly how predictions are made while retaining GBM performance
- Plug-and-Play: Integrates directly into existing rating engines and actuarial software

Perfect For:

- Insurance Pricing & High-Stakes Finance: Where regulatory approval is required
- Healthcare & Criminal Justice: Where algorithmic transparency is mandatory
- High-Dimensional Problems: Built-in feature selection for true sparsity

Bottom Line: Deploy state-of-the-art ML where transparency and interpretability is required

Questions?

Contact: Email: info@avenue-analytics.com LinkedIn: Lucas Muzynoski **Link** to pre-print of full paper