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Risk model

The medical expenses of a pet, over a year, are given by

X =
N∑
i=1

Ui

where
N is the number of visit to the vet
Ui are the associated expenses
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Pure premium

The insurance company offer a coverage of the risk

g(X )=min[max(r ·X −d ,0), l ],

where
r is the coverage rate
d is the deductible
l is the limit

The pure premium is given by

p = E[g(X )].

Using historical data ⇒ p̂
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Commercial premium

Expectation principle

The final quote is given by

p̃ = f (p)≥ p

For instance,
p̃ = (1+η)p, η> 0
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Market data

Let D = {p̃1, . . . , p̃n} be a collection of insurance quotes with

p̃i = fi
{
E [gi (X )]

}
, i = 1, . . . ,n,

where
The loading functions fi are unknown
The insurance coverages gi are known
The risk X is parametrized by an unknown parameter θ.
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Optimization problem

Find θ ∈Θ⊂Rd and f :R+ 7→R+ to minimize

d
[
p̃1:n, f

(
pθ1:n

)]
,

where
pθi = Eθ [gi (X )] , for i = 1, . . . ,n, associated to X parametrized by θ

f is applied elementwise on pθ1:n
d(·, ·) distance function over the observation space

Subject to
p̃i ≥ pθi , and f (pθi )≥ pθi , for i = 1, . . . ,n.
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ABC algorithm

1 Sample a parameter value
θ ∼π(θ)

2 Compute
pθi = Eθ [gi (X )] for i = 1, . . . ,n

3 Fit an isotonic regression model

p̃i ∼ f (pθi ) for i = 1, . . . ,n

4 If
d

[
p̃1:n, f

(
pθ1:n

)]
< ϵ

then we store θ and f .

Repeat the procedure to have many parameter values and build

πϵ(θ|p̃1:n),

the proxy of the posterior distribution.
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Isotonic regression

How to learn the link between pure and commercial premium?
The data is made of pairs (pi , p̃i )i=1,...,n

Assume that p1 < . . . < pn

Find p̃∗1 , . . . , p̃∗n that minimize

n∑
i=1

(p̃∗i − p̃i )
2, subject to p̃∗i ≤ p̃∗j whenever pi ≤ pj .

The link is estimated by

f (p)=
n∑
i=1

p̃∗i I[p̃∗
i ,p̃∗

i+1]
(p)

Isotonic regression ⇒ p̃∗1 , . . . , p̃∗n ⇒ f
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PAVA Algorithm
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Non identifiability

Ill posed inverse problem

" Many parameters can be equally good

We address this issue by
adding a regularization term so that

LRi =
pi
p̃i

∈ [LRlow,LRhigh] for i = 1, . . . ,n

Using a particle based optimization algorithm
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Data

1,080 pet insurance quotes from 5 insurance companies

Variable Description Example
specie Specie of the pet dog
breed Breed of the pet australian sheperd
gender Gender of the pet female
insurance_carrier identification number of the insurance company 1
age Age of the pet (in years) 4 years
r Value of the coverage rate 0.6
l Value of the limit of the insurance coverage 1100
d Value of the deductible of the insurance coverage 0
x Yearly commercial premium 234.33

Table: List of the variables of our dataset
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Several risk classes / One model

Risk class # specie breed gender age
1 dog australian sheperd female 4 months
2 dog australian sheperd female 2 years
3 dog australian sheperd female 4 years
4 dog french bulldog female 4 months
5 dog french bulldog female 2 years
6 dog french bulldog female 4 years
7 dog german sheperd female 4 months
8 dog german sheperd female 2 years
9 dog german sheperd female 4 years
10 dog golden-retriever female 4 months
11 dog golden-retriever female 2 years
12 dog golden-retriever female 4 years

Table: The 12 risk classes under study

We fit the Pois(λ)−LogNorm(µ,σ= 1) with prior settings

λ∼Unif([0,10]), and µ∼Unif([−10,10]).
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Risk classes comparison
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Limitations

Model misspecification
Premium principle misspecification
Heterogeneous data
Computing time
Identifiability issue
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Conclusion

IsoPriceR package

Theoretical study

Model selection

Other applications than pet insurance

Market data + historical data

,→ credibility framework

The preprint is avalable at

Pierre-Olivier Goffard, Pierrick Piette, and Gareth W. Peters.
Market-based insurance ratemaking: Application to pet insurance.
ASTIN Bulletin, pages 1–24, April 2025.
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Model identifiability?

Let X ∼LogNorm(σ=0.3) and consider 3 insurance coverages

gr (x)=0.75 ·X ,gd (x)=max(X −0.25,0), and gl (x)=min(X ,1.5)

We have
pr =0.78< pd =0.79< pl =0.97
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 = 0.3
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σ1 = 0.25

Let X ∼LogNorm(σ1 =0.25), we have
pr =0.77< pd =0.78< pl =0.98
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σ2 = 0.75

Let X ∼LogNorm(σ2 =0.75), we have
pd =1.07> pr =0.99> pl =0.89
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Population Monte Carlo Algorithm

Algorithm ABC-PMC
1: set ϵ0 =∞ and πϵ0 (θ|D)=π(θ)
2: for g = 1 to G do
3: for j = 1 to J do
4: repeat
5: generate θ∗ ∼πϵg−1 (θ|D)

6: compute pθ
∗

i
= Eθ∗ [gi (X )] , for i = 1, . . . ,n

7: fit the isotonic regression model p̃i = f (pθ
∗

i
)+ei , for i = 1, . . . ,n

8: compute d
[
p̃1:n , f

(
pθ

∗
1:n

)]
.

9: until d
[
p̃1:n , f

(
pθ

∗
1:n

)]
< ϵg

10: set θ
g
j
= θ∗ and d

g
j
= d∗

11: end for

12: find ϵg ≤ ϵg−1 so that �ESS=
[∑J

j=1

(
w
g
j

)2]−1
≈ J/2 , where w

g
j
∝

π(θ
g
j
)

πϵg−1 (θ
g
j
|D)

Idj<ϵg

13: compute πϵg (θ|D)=∑J
j=1w

g
j
KH (θ−θ

g
j
)

14: end for
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