Market-based insurance ratemaking

Pierre-O. Goffard (Joint work with G. Peters and P. Piette)

Université de Strasbourg goffard@unistra.fr

Insurance Data Science

Vet Bill. Oil on canvas.

The medical expenses of a pet, over a year, are given by

$$X = \sum_{i=1}^{N} U_i$$

where

- N is the number of visit to the vet
- *U_i* are the associated expenses

Pure premium

The insurance company offer a coverage of the risk

$$g(X) = \min[\max(r \cdot X - d, 0), l],$$

where

- r is the coverage rate
- d is the deductible
- I is the limit

The pure premium is given by

 $p = \mathbb{E}[g(X)].$

Using historical data $\Rightarrow \hat{p}$

Commercial premium

Expectation principle

The final quote is given by

 $\widetilde{p}=f(p)\geq p$

For instance,

$$\widetilde{p} = (1+\eta)p, \ \eta > 0$$

Market data

Let $\mathcal{D} = \{\widetilde{p}_1, \dots, \widetilde{p}_n\}$ be a collection of insurance quotes with

$$\widetilde{p}_i = f_i \left\{ \mathbb{E}\left[g_i(X)\right] \right\}, \ i = 1, \dots, n,$$

where

- The loading functions f_i are unknown
- The insurance coverages g_i are known
- The risk X is parametrized by an unknown parameter θ .

Optimization problem

Find $\theta \in \Theta \subset \mathbb{R}^d$ and $f : \mathbb{R}_+ \mapsto \mathbb{R}_+$ to minimize

$$d\left[\widetilde{p}_{1:n}, f\left(p_{1:n}^{\theta}\right)\right],$$

where

p^θ_i = E_θ[g_i(X)], for i = 1,...,n, associated to X parametrized by θ
 f is applied elementwise on p^θ_{1:n}
 d(·,·) distance function over the observation space

Subject to

$$\widetilde{p}_i \ge p_i^{\theta}$$
, and $f(p_i^{\theta}) \ge p_i^{\theta}$, for $i = 1, ..., n$.

ABC algorithm

1 Sample a parameter value

$$\theta \sim \pi(\theta)$$

2 Compute

$$p_i^{\theta} = \mathbb{E}_{\theta} \left[g_i(X) \right]$$
 for $i = 1, ..., n$

3 Fit an isotonic regression model

$$\widetilde{p}_i \sim f(p_i^{\theta})$$
 for $i = 1, ..., n$

4 If

$$d\left[\widetilde{p}_{1:n}, f\left(p_{1:n}^{\theta}\right)\right] < \epsilon$$

then we store θ and f.

Repeat the procedure to have many parameter values and build

$$\pi_\epsilon \big(\theta | \widetilde{p}_{1:n} \big),$$

the proxy of the posterior distribution.

Isotonic regression

How to learn the link between pure and commercial premium?

- The data is made of pairs $(p_i, \tilde{p}_i)_{i=1,...,n}$
- Assume that $p_1 < \ldots < p_n$
- Find $\tilde{p}_1^*, \dots, \tilde{p}_n^*$ that minimize

$$\sum_{i=1}^{n} (\tilde{p}_{i}^{*} - \tilde{p}_{i})^{2}, \text{ subject to } \tilde{p}_{i}^{*} \leq \tilde{p}_{j}^{*} \text{ whenever } p_{i} \leq p_{j}.$$

The link is estimated by

$$f(p) = \sum_{i=1}^{n} \widetilde{p}_{i}^{*} \mathbb{I}_{[\widetilde{p}_{i}^{*}, \widetilde{p}_{i+1}^{*}]}(p)$$

Isotonic regression $\Rightarrow \widetilde{p}_1^*, \dots, \widetilde{p}_n^* \Rightarrow f$

PAVA Algorithm

Non identifiability

Ill posed inverse problem

▲ Many parameters can be equally good

We address this issue by

adding a regularization term so that

$$LR_i = \frac{p_i}{\widetilde{p}_i} \in [LR_{low}, LR_{high}] \text{ for } i = 1, ..., n$$

Using a particle based optimization algorithm

Data

1,080 pet insurance quotes from 5 insurance companies

Variable	Description	Example
specie	Specie of the pet	dog
breed	Breed of the pet	australian sheperd
gender	Gender of the pet	female
insurance carrier	identification number of the insurance company	1
age	Age of the pet (in years)	4 years
r	Value of the coverage rate	0.6
1	Value of the limit of the insurance coverage	1100
d	Value of the deductible of the insurance coverage	0
х	Yearly commercial premium	234.33

Table: List of the variables of our dataset

Pierre-O. Goffard (Joint work with G. Peters and P. Piette)

Several risk classes / One model

Risk class $\#$	specie	breed	gender	age
1	dog	australian sheperd	female	4 months
2	dog	australian sheperd	female	2 years
3	dog	australian sheperd	female	4 years
4	dog	french bulldog	female	4 months
5	dog	french bulldog	female	2 years
6	dog	french bulldog	female	4 years
7	dog	german sheperd	female	4 months
8	dog	german sheperd	female	2 years
9	dog	german sheperd	female	4 years
10	dog	golden-retriever	female	4 months
11	dog	golden-retriever	female	2 years
12	dog	golden-retriever	female	4 years

Table: The 12 risk classes under study

We fit the $Pois(\lambda) - LogNorm(\mu, \sigma = 1)$ with prior settings

 $\lambda \sim \text{Unif}([0, 10])$, and $\mu \sim \text{Unif}([-10, 10])$.

Risk classes comparison

Limitations

- Model misspecification
- Premium principle misspecification
- Heterogeneous data
- Computing time
- Identifiability issue

Conclusion

- IsoPriceR package
- Theoretical study
- Model selection
- Other applications than pet insurance
- Market data + historical data
 - \hookrightarrow credibility framework

The preprint is avalable at

Market-based insurance ratemaking

Pierre-Olivier Goffard, Pierrick Piette, and Gareth W. Peters. Market-based insurance ratemaking: Application to pet insurance. ASTIN Bulletin, pages 1–24, April 2025.

Model identifiability?

Let $X \sim \text{LogNorm}(\sigma = 0.3)$ and consider 3 insurance coverages

$$g_r(x) = 0.75 \cdot X, g_d(x) = \max(X - 0.25, 0), \text{ and } g_l(x) = \min(X, 1.5)$$

We have

$$p_r = 0.78 < p_d = 0.79 < p_l = 0.97$$

$\sigma_1 = 0.25$

Let $X \sim \text{LogNorm}(\sigma_1 = 0.25)$, we have

$$p_r = 0.77 < p_d = 0.78 < p_l = 0.98$$

$\sigma_2 = 0.75$

Let $X \sim \text{LogNorm}(\sigma_2 = 0.75)$, we have

$$p_d = 1.07 > p_r = 0.99 > p_l = 0.89$$

Population Monte Carlo Algorithm

Algorithm ABC-PMC

1: set
$$e_0 = \infty$$
 and $\pi_{e_0}(\theta | \mathscr{D}) = \pi(\theta)$
2: for $g = 1$ to G do
3: for $j = 1$ to J do
4: repeat
5: generate $\theta^* \sim \pi_{e_{g-1}}(\theta | \mathscr{D})$
6: compute $p_i^{\theta^*} = \mathbb{E}_{\theta^*}[g_i(X)]$, for $i = 1, ..., n$
7: fit the isotonic regression model $\tilde{p}_i = f(p_i^{\theta^*}) + e_i$, for $i = 1, ..., n$
8: compute $d\left[\tilde{p}_{1:n}, f\left(p_{1:n}^{\theta^*}\right)\right]$.
9: until $d\left[\tilde{p}_{1:n}, f\left(p_{1:n}^{\theta^*}\right)\right] < \epsilon_g$
10: set $\theta_j^g = \theta^*$ and $d_j^g = d^*$
11: end for
12: find $\epsilon_g \leq \epsilon_{g-1}$ so that $\widehat{ESS} = \left[\sum_{j=1}^{J} \left(w_j^g\right)^2\right]^{-1} \approx J/2$, where $w_j^g \propto \frac{\pi(\theta_j^g)}{\pi_{e_{g-1}}(\theta_j^g | \mathscr{D})} \mathbb{I}_{d_j < e_g}$
13: compute $\pi_{e_g}(\theta | \mathscr{D}) = \sum_{j=1}^{J} w_j^g K_H(\theta - \theta_j^g)$
14: end for