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Human Mortality Forecasting for Developing Countries/Regions

Many developing countries/regions have experienced a rapid mortality decline
over the past few decades.
Their recent mortality development trends are NOT necessarily driven by the
same factors as their long-term behaviours.
We propose a time–varying mortality forecasting model based on the life
expectancy and lifespan disparity gap between these developing countries
and a selected benchmark group (developed countries).
We use a deep neural network model with an LSTM architecture to project
the life expectancy and lifespan disparity difference, which further controls
the rotation of the time-varying Lee-Carter (LC) model for three developing
countries.
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Time-Varying LC model

Let the logarithm of central death rate m j
x,t for a particular developing country j

at age x and year t satisfieds

lnm j
x,t = a j

x +b j
x,t k j

t +εx,t ,

k j
t = d j

t +k j
t−1 +ϵt ,

(1)

The main differences between (1) and the classical LC method:
the time–varying b j

x,t that measures a time–dependent age effect on mortality
at different periods;
the time-varying d j

t describes a time-dependent drift in the random walk
model used to project the period effect k j

t .
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Projection of Time-varying Factors

The age effect and drift terms of the period effect in the time-varying LC model
are projected as

b j
x,t+1 = (1−ωb

t )b̂ j
x +ωb

t B̂x

d j
t+1 = (1−ωd

t )d̂ j +ωd
t d̂0,

(2)

b̂ j
x and d̂ j are the estimated LC parameters for country j ;

B̂x and d̂0 are the estimated parameters of the Li-Lee model for the
benchmark group.
The key of such a time-varying LC model is the projection of the time-varying
weights ωb

t and ωd
t .
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Projection of Time-varying Factors

For simplicity, let ωd
t =ωb

t =ωt , for all t ≥ T (T is the maximum time for training
in the data),

ωt =
{

1

2

(
1+ sin

[
π

2

(
2max

(
gT − g t

gT
,0

)
−1

)])}p

, (3)

where g t is the life expectancy and lifespan disparity gap at time t between the
target country/region and the benchmark group.

ωt increases smoothly to 1 if the life expectancy/life disparity gap decreases
in the projection phase.
p ∈ [0,1] is a tuning parameter, we choose p = 1 such that ωt has low rate of
change close to 0 and 1.
The life expectancy/life disparity gaps g t are projected using a unified neural
network model with LSTM architecture.
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LSTM-based Mortality Forecasting Model

Input layer (Life expectancy/Lifespan disparity)

Neural network layer

Dense layer

Target dataBenchmark data

Gap function

LSTM Layer

LSTM Layer

Linear

Soft Max
Rotation algorithm

ExposureDeaths

Time-varying LC

Mortality Output layer
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Data Information

Benchmark group: Denmark, Finland, France, the Netherlands, Switzerland,
Sweden, the U.K., the U.S., and Japan.
The central death rates in the one–age and one–year blocks, ages equal to 0,
1, 2, 3, ... , 97, 98, 99, and years ranging from 1950 to 2019 (remove
COVID-19 effects).
The mortality data of developing countries/regions (e.g., Mainland China) is
obtained from the United Nations population division.
Note that a necessary condition for the application of our method is that the
life expectancy or lifespan disparity of the target countries/regions converges
to the ones of the benchmark group.
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Empirical Results for China (6-year Avg. Prediction Errors)

Year 85-91 92-98 99-05 06-12 13-19 Total

MSE

LC 0.0878 0.0965 0.0854 0.0794 0.0904 0.0879
Li-Lee 0.0202 0.0279 0.0314 0.0355 0.0509 0.0332

LSTM-ex 0.0078 0.0214 0.0245 0.0375 0.0588 0.0301
LSTM-disp 0.0055 0.0146 0.0123 0.0121 0.0179 0.0125

MAE

LC 0.2104 0.2293 0.2129 0.2145 0.2327 0.2201
Li-Lee 0.1146 0.1312 0.1293 0.1305 0.1541 0.1321

LSTM-ex 0.0575 0.0998 0.1194 0.1565 0.2003 0.1267
LSTM-disp 0.0496 0.0738 0.0681 0.0682 0.0933 0.0706

RMSE

LC 0.2481 0.2902 0.2885 0.2816 0.2888 0.2939
Li-Lee 0.1382 0.1669 0.1732 0.1791 0.2008 0.1781

LSTM-ex 0.0881 0.1462 0.1565 0.1935 0.2417 0.1731
LSTM-disp 0.0731 0.1205 0.1109 0.1082 0.1308 0.1116
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Prediction Errors (in Years) for China

(Females at the top, males on the bottom.)
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Thank You!

Questions?

Ran Xu (XJTLU) LSTM Mortality Forecasting June 13, 2025 15 / 15


	Our Work
	LSTM-based Time-varying LC Model
	Mortality Data
	Empirical Results 

