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Theoretical justification of using neural surrogates for ODEs
system

How to infer temperature from carbon emission?
Simple Climate Models (eg. DICE): computationally demanding for
century-scale scenario (ODE solvers)
Semi-infinite time interval : ODEs system defined on a non-compact
time domain

Scenarios that reflect exponential change...
CO2 Dynamics: Multi-timescale effects Pierrehumbert

Requires exponential solutions: Green tech surges, Renewables...

Pierrehumber: CO2 acts like a mixture of decadel-, centennial-, millennial-, and
infinite-lifetime gases [Pierrehumbert, 2014]
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From Emissions to Instant Climate Forecasts:
Neural Surrogate

Exponential decoded emission trajectories & AI
Break Emission trajectories into Exponentials:
Generalized Dirichlet polynomials
E (t) ≈ EGD(t) :=

∑NGD

l=1

(
c2l−1e

−λl t + c2le
−λl tt

)
Neural Surrogate: 100× faster than DICE
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Theoretical Backbone

The ReLU Neural network can approximate smooth functions
well[Yarotsky, 2017]. Our strategy

Time change: (0,∞) → [0, 1] using parameter η,

u = 1 − e−t/η. (1)

Smoothness condition modulated by η:
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Main theoretical results
Theorem 1

Assume the parameter η > 0 in the time-change (1) satisfies:
λlη /∈ N and λlη > 1, ∀λl ∈ {λ1, . . . , λNGD

},
λMi

η /∈ N and λMi
η > 1, ∀λMi

∈ {λM1 , λM2},
λTi

η /∈ N and λTi
η > 1, ∀λTi

∈ {λT1 , λT2}.
(2)

Define:

k1 := min
λl∈{λ1,...,λNGD

}
⌊λlη⌋ ≥ 1, k2 := min

i=1,2
⌊λMi

η⌋ ≥ 1, k3 := min
i=1,2

⌊λTi
η⌋ ≥ 1.

For any ε ∈ (0, 1) there exists a standard fully-connected (dense) feedforward Neural
Network Φ with ReLU activations such that

sup
x=(u,ω)∈[0,1]×Bω

|T̃AT(x)− Φ(x)| ≤ ε, (3)

with D = 2NGD + 6, we have complexity bounds:

L(Φ) ≤ c1

(
log(

1
ε
) + 1

)
, N(Φ) ≤ c2ε

− D
min(k1,k2,k3)

(
log(

1
ε
) + 1

)
,

with some constants c1 and c2 depending on D,min(k1, k2, k3) and the function T̃AT.
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High precision NN approximation with simple
architecture

Figure: Boxplot comparison of relative error across time ranges. The neural network
has been trained using the augmented dataset, where ntraj = 1000 × 8 (1000
trajectories for each SSP emission trajectory) and ntime = 500.
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Faster mapping

Method ntime = 100 ntime = 500 ntime = 1000
ODE Solver 75.4654 158.5378 338.36
Neural Network (NN) 0.6414 2.5254 4.20

Table: Computation time (in seconds) for ODE solver and neural network for
500 emission trajectories with different values of ntime.
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Achievements:
Traditional model: ODEs defined on non-compact time domain;
A suitable time change to retrieve boundedness;
Emission trajectory encoding using exponentials (Dirichlet
Polynomials);
The transformed ODEs satisfy suitable smoothness properties with
respect to input parameters;
A fast-to-evaluate meta-model from emission trajectories to
temperature ones.

Future-Proofing:
Beyond CO2: Expand to Methane, other aerosols, encode multi-gas
exponentials for holistic policy assessments.
Beyond DICE: Extend to more complex climate systems.

More info: hal-04990321
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Emission Trajectories approximated Generalized Dirichlet
Polynomials

Theorem 2

Assume that E is k-times continuously differentiable on [0,∞) and that the
derivatives of E converge η-exponentially fast to 0. Then, there is a finite
constant c that depends on k, κ1, · · · , κk , η (but not on NGD) such that

inf
λ1,··· ,λNGD

inf
c1,··· ,c2NGD

sup
t≥0

∣∣∣∣∣E(t)−
NGD∑
l=1

(
c2l−1e

−λl t + c2le
−λl tt

)∣∣∣∣∣ ≤ c
1

NGD
k−1 ,

for any NGD ≥ k.
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