Meta-modelling paths of Simple Climate Models using Neural Networks and Dirichlet polynomials: An application to DICE

based on joint work with

E. Gobet¹ <u>Y. Liu</u>¹ G. Vermandel¹

¹École Polytechnique

https://hal.archives-ouvertes.fr/hal-04990321

Insurance Data Science Conference - London - 19 June 2025

• Theoretical justification of using neural surrogates for ODEs system

- How to infer temperature from carbon emission?
- Simple Climate Models (eg. DICE): computationally demanding for century-scale scenario (ODE solvers)
- <u>Semi-infinite time interval</u>: ODEs system defined on a non-compact time domain
- Scenarios that reflect exponential change...
 - CO2 Dynamics: Multi-timescale effects Pierrehumbert
 - Requires exponential solutions: Green tech surges, Renewables...

Pierrehumber: CO_2 acts like a mixture of decadel-, centennial-, millennial-, and infinite-lifetime gases [Pierrehumbert, 2014]

Introduction Conclusion and Perspectives Theoretical Backbone Numerical experimental results

From Emissions to Instant Climate Forecasts: Neural Surrogate

Exponential decoded emission trajectories & AI

• Break Emission trajectories into Exponentials:

Generalized Dirichlet polynomials $E(t) \approx E_{GD}(t) := \sum_{l=1}^{N_{GD}} (c_{2l-1}e^{-\lambda_l t} + c_{2l}e^{-\lambda_l t}t)$

• Neural Surrogate: 100× faster than DICE

Theoretical Backbone

The ReLU Neural network can approximate **smooth** functions well[Yarotsky, 2017]. Our strategy

• Time change: $(0,\infty) \rightarrow [0,1]$ using parameter η ,

$$u = 1 - e^{-t/\eta}.\tag{1}$$

• Smoothness condition modulated by η :

Main theoretical results

Theorem 1

Assume the parameter $\eta > 0$ in the time-change (1) satisfies:

$$\begin{array}{ll} \lambda_{l}\eta \notin \mathbb{N} \text{ and } \lambda_{l}\eta > 1, & \forall \lambda_{l} \in \{\lambda_{1}, \dots, \lambda_{N_{GD}}\}, \\ \lambda_{M_{i}}\eta \notin \mathbb{N} \text{ and } \lambda_{M_{i}}\eta > 1, & \forall \lambda_{M_{i}} \in \{\lambda_{M_{1}}, \lambda_{M_{2}}\}, \\ \lambda_{T_{i}}\eta \notin \mathbb{N} \text{ and } \lambda_{T_{i}}\eta > 1, & \forall \lambda_{T_{i}} \in \{\lambda_{T_{1}}, \lambda_{T_{2}}\}. \end{array}$$

$$(2)$$

Define:

$$k_{1} := \min_{\lambda_{I} \in \{\lambda_{1}, \dots, \lambda_{N_{GD}}\}} \lfloor \lambda_{I} \eta \rfloor \geq 1, \quad k_{2} := \min_{i=1,2} \lfloor \lambda_{M_{i}} \eta \rfloor \geq 1, \quad k_{3} := \min_{i=1,2} \lfloor \lambda_{T_{i}} \eta \rfloor \geq 1.$$

For any $\varepsilon \in (0,1)$ there exists a standard fully-connected (dense) feedforward Neural Network Φ with ReLU activations such that

$$\sup_{\mathsf{x}=(u,\omega)\in[0,1]\times\mathcal{B}_{\omega}}|\widetilde{T^{\mathrm{AT}}}(\mathsf{x})-\Phi(\mathsf{x})|\leq\varepsilon,\tag{3}$$

with $D = 2N_{GD} + 6$, we have complexity bounds:

$$L(\Phi) \leq c_1 \left(\log(\frac{1}{\varepsilon}) + 1 \right), \qquad N(\Phi) \leq c_2 \varepsilon^{-\frac{D}{\min(k_1, k_2, k_3)}} \left(\log(\frac{1}{\varepsilon}) + 1 \right),$$

with some constants c_1 and c_2 depending on D, $\min(k_1, k_2, k_3)$ and the function T^{AT} .

Introduction Conclusion and Perspectives Theoretical Backbone Numerical experimental results

High precision NN approximation with simple architecture

Figure: Boxplot comparison of relative error across time ranges. The neural network has been trained using the augmented dataset, where $n_{\text{traj}} = 1000 \times 8$ (1000 trajectories for each SSP emission trajectory) and $n_{\text{time}} = 500$.

Faster mapping

Method	$n_{time} = 100$	$n_{time} = 500$	$n_{time} = 1000$
ODE Solver	75.4654	158.5378	338.36
Neural Network (NN)	0.6414	2.5254	4.20

Table: Computation time (in seconds) for ODE solver and neural network for 500 emission trajectories with different values of n_{time} .

Conclusion and Perspectives

Achievements:

- Traditional model: ODEs defined on non-compact time domain;
- A suitable time change to retrieve boundedness;
- Emission trajectory encoding using exponentials (Dirichlet Polynomials);
- The transformed ODEs satisfy suitable smoothness properties with respect to input parameters;
- A fast-to-evaluate meta-model from emission trajectories to temperature ones.

Future-Proofing:

- **Beyond CO₂**: Expand to Methane, other aerosols, encode multi-gas exponentials for holistic policy assessments.
- Beyond DICE: Extend to more complex climate systems.

More info: hal-04990321

References

Pierrehumbert, R. T. (2014).

Short-lived climate pollution.

Annual review of earth and planetary sciences, 42(1):341-379.

Yarotsky, D. (2017).

Error bounds for approximations with deep ReLU networks. *Neural Networks*, 94:103–114.

Emission Trajectories approximated Generalized Dirichlet Polynomials

Theorem 2

Assume that E is k-times continuously differentiable on $[0, \infty)$ and that the derivatives of E converge η -exponentially fast to 0. Then, there is a finite constant c that depends on $k, \kappa_1, \dots, \kappa_k, \eta$ (but not on N_{GD}) such that

$$\inf_{\lambda_1,\cdots,\lambda_{N_{GD}}} \inf_{c_1,\cdots,c_{2N_{GD}}} \sup_{t\geq 0} \left| E(t) - \sum_{l=1}^{N_{GD}} \left(c_{2l-1} e^{-\lambda_l t} + c_{2l} e^{-\lambda_l t} t \right) \right| \leq c \frac{1}{N_{GD}^{k-1}},$$

for any $N_{GD} \ge k$.