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Motivation: actuarial models in insurance pricing

Problem: determine the (pure) premium πi for insured i with

number of claims Ni over exposure ei,

aggregate loss Li over exposure ei.

Decompose the premium in frequency and severity:

πi = E

[
Li

ei

]
= E

[
Ni

ei

]
× E

[
Li

Ni

]
= E [Freqi]× E [Sevi] .

Classical assumption of independence allows for separate predictive modeling
of E [Freqi] and E [Sevi].
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Motivation: actuarial models in practice

In practice, insurers often use GLMs with observable risk factors:

Continuous risk factors: age, experience, car power, ...

Nominal (multi-level) risk factors: gender, fuel type, coverage type, car
brand and model, ...

Spatial risk factor (postal code), interactions, ...

Goals:

use of GLM framework;

data driven risk factor selection;

data driven risk factor binning;

transparent, communicable to insurers and insureds.
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Motivation: beyond current practice

Standard GLM binning algorithm:

1 A priori find the relevant risk factors and their bins.
(e.g. through professional expertise)

2 Optimize the GLM loglikelihood to obtain the parameter for every bin.

A data driven GLM binning algorithm:

1 Make very small bins.
(e.g. every age its specific bin)

2 Optimize the GLM loglikelihood while ‘regularizing’ the parameters to
encourage selection and binning/fusion.

O(β) = −`(β) + λP (β).
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Regularization: the LASSO

2D example
O(β) = −`(β) + λ (|β1|+ |β2|) .

Constraint is sharp,
non-smooth.

Encourages selection of
either β1 or β2.

Extensively studied and
efficiently solved.

‘The Elements of Statistical Learning’
Hastie et al. (2009).
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LASSO regularization
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Beyond the LASSO

LASSO has been extensively studied and used (but largely unexplored in
actuarial literature).

DNA - gene selection (classical example).

Portfolio selection: select the most important stocks for a certain
strategy.

LASSO regularization is not fit for all types of variables, but can be adjusted
to the type of risk factor. E.g. ‘age’, ‘bm-scale’?

1 Determine the type of your risk factor.

2 Allocate a logical penalty to your risk factor.
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Matching regularization to type of risk factor

Ordinal risk factors (e.g. age): Fused Lasso

λ
∑
i

wi|βi+1 − βi|.

Nominal risk factors (e.g. car brand and model): Generalized Fused
Lasso

λ
∑
i>k

wi,k|βi − βk|.

Spatial risk factors (e.g. postal code): Graph Guided Fused Lasso

λ
∑

(i,k)∈G

wi,k|βi − βk|.

. . .
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Fused Lasso
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Generalized Fused Lasso
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Interludium

Regularization is very popular in machine learning (big data!) and
statistics literature BUT only does regularization with one type of risk
factor at a time.

Efficient algorithms and R packages are available in the Gaussian case
and for ‘one type/penalty’

glmnet (Simon): Lasso, ridge en elastic net for GLMs.

genlasso (Arnold): 1D and 2D Fused Lasso, signal approximation, trend
filtering for Gaussian case.

Need for:

Extension of literature and algorithms to GLMs.

Simultaneously work with risk factors of different types.
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A unified framework??

Gertheiss - Tutz - Oelker (2010-2016)
‘Sparse modeling of categorial explanatory variables’ - Annals of Applied
Statistics

GLM implementation.

Many different penalties.

R package available: gvcm.cat (not maintained).

But...
Fitting algorithm: ‘local quadratic approximation’ and subsequent quadratic
programming:

Only approximate clustering.

How to choose approximation accuracy? Cluster accuracy?

Computationally intensive.
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Local quadratic approximation
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A unified framework!!

For J risk factors, each with regularization term Pj(), we want to optimize:

−` (β1, . . . ,βJ) +

J∑
j=1

Pj (βj),

For this we use the theory of proximal operators (PO):

ProxP (v) = argmin
z

(
P (z) +

1

2
||z − v||22

)
.

Interpretation:

POs are (generalized) projections. From a starting point v, the PO will
project this v to the closest point in the constraint associated with
penalty P () (remember the diamond surface for LASSO).
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Optimization algorithm using proximal operators

Efficient algorithm to optimize

−` (β1, . . . ,βJ) +

J∑
j=1

Pj (βj).

1 Choose a (good) starting value.

2 Ignore penalties Pj() and move in the direction of optimal point for `().

3 Project new point onto the constraint set (= calculate the PO of this
new point).

4 Repeat until convergence.

Step 3 is ‘easy’, because projection splits into projecting the separate
components βj .
This makes our algorithm efficient and scalable!
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Proximal operator as projections
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Practical example: MTPL data

Motor third party liability dataset (163 234 observations):

response is number of claims;

ordered predictors age, bonus malus scale, power of car ;

nominal predictors type of coverage, type of fuel ;

total of 281 parameters.

Fit GLM with Poisson assumption with weighted regularization terms.
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Practical example: MTPL data
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Figure: Comparison of parameter estimates for predictor power. GAM fit, penalized
fit and re-estimated penalized fit for MTPL dataset. Penalties were weighted using
GAM-based weights.
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Practical example: MTPL data
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Figure: Comparison of parameter estimates for predictor age between GAM fit,
penalized fit and re-estimated penalized fit for MTPL dataset. Penalties were
weighted using GAM-based weights.
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Practical example: MTPL data
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Conclusion: our contribution

Applying machine learning techniques to a classical statistical problem.

Implementing an efficient algorithm which is scalable and interpretable.

Flexibility of regularization takes into account type/structure of risk
factor.

Works for all popular penalties.

Makes use of available penalty-specific literature.
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Conclusion: further research

Further improving algorithm efficiency.

Implementing new penalties for spatial information, interaction effects...

R package building in progress.

Write a paper!
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