

Solution for Technical Provisions in R

Gabriel Foix

Mirai Solutions GmbH Tödistrasse 48 CH-8002 Zurich Switzerland

info@mirai-solutions.com www.mirai-solutions.com

- Introduction to Technical Provisions (TP)
- Motivation
- Our Solution in R
- Example
- Conclusions

Introduction Technical Provisions (TP)

- Usually TP are the largest item on the balance sheet of a (re-)insurer
- Calculated TP enter the (marketconsistent) balance sheet directly
 - Key input in the SCR calculation
 - Driver of the Profit & Loss
 Attribution
- Solvency II requires TP to be the "best estimate" of the current liabilities relating to insurance contracts (claims and premium provisions) plus a risk margin

Introduction Technical Provisions (TP)

Under Solvency II, TP consist of the present value claim provisions, premium provisions (best estimate), and risk margin.

The present value of the in- and out-going cash-flows can be calculated by (1) applying a **payment pattern** (PP) to the **undiscounted reserves**, (2) discounting them at their **appropriate rate (currency)** and finally (3) aggregating.

Motivation

Project carried out for a global insurer with presence in most of Europe

Some figures:

- +25 independent business units (BU)
- +4000 payment patterns (BU x LoB x measure x segment x variables)
- +20 currencies
- Different sources of information (accounting/finance, actuarial/reserving, credit risk etc)

Old process

- Error-prone, time-consuming and not scalable (MS Excel based)
- Not fulfilling the Solvency II governance requirements:

"Insurers have process in place to ensure the appropriateness, completeness and accuracy of the data and calculations in their Technical Provisions"

- Very difficult to trace / audit
- Unable to face upcoming challenges like IFRS17

Motivation: Process ex-ante

Process diagram of the old Excel based approach (pivot tables, array formulas, etc)

Example: payment pattern input

Dim5: t (quarters)

~ ~									
		lob	measure	segment	unit	Q1	Q2	Q3	Q4
	Dimension1: Lines of	Accident	ceded	corp	unit1	0.0097415	0.0284478	0.0498269	0.0534631
	Business (LoB)	Health (Sickness)	ceded	corp	unit1	0	0	0	0
		Marine, Aviation, Transp	ceded	corp	unit1	0.0167187	0.0715947	0.1192711	0.1682678
	Dim2: Measures	Credit/Mortgage and Sur	ceded	corp	unit1	0.0073956	0.0512336	0.0903283	0.1554165
		Crime/Fidelity/Pecuniary	ceded	corp	unit1	0.0172448	0.0215113	0.0539542	0.0682998
		Motor - 3rd Party/Liabilit	ceded	corp	unit1	0.0887523	0.1648557	0.1973106	0.1951389
	Dim3: Segment	Motor - All Other	ceded	corp	unit1	0.1072621	0.1844396	0.2515469	0.2483029
		Property	ceded	corp	unit1	0.0419536	0.1215095	0.1854559	0.2180664
		Property - Engineering L	ceded	corp	unit1	0.0621928	0.1447307	0.2242805	0.2462537
	Dim4: Business Units	Liability - Primary - Prod	ceded	corp	unit1	0.0155705	0.0562602	0.0936267	0.1125019
		Liability - Primary - Non-	ceded	corp	unit1	0.0165636	0.045626	0.0553627	0.0453
Ĺ	_	Liability - Excess Policie	ceded	corp	unit1	0	0	0	0
		Professional Indemnity	ceded	corp	unit1	0	0	0	0
		Work Comp/EL	ceded	corp	unit1	0.0621928	0.1447307	0.2242805	0.2462537
	Kev = Dim1 & Dim2	Work Comp/EL - High D	ceded	corp	unit1	0	0	0	0
-	& Dim3 & Dim4	Multi-Peril	ceded	corp	unit1	0	0	0	0
		Legal Expenses	ceded	corp	unit1	0.00824	0.0478303	0.0783058	0.1002509
		Assistance	ceded	corp	unit1	0.1072621	0.1844396	0.2515469	0.2483029
		Miscellaneous	ceded	corp	unit1	0.1489704	0.2052116	0.2709924	0.231669
		Accident	ceded	corp	unit2	0.1504051	0.1500153	0.2016272	0.1317237

TP package with new S3 pattern objects...

@param keys \code{data.frame} providing the keys for the pattern.

@param pmat \code{matrix} representing the actual pattern. Columns represent the quarterly or annual developments.

Our Solution in R

...plus the corresponding S3 Group Generic Functions...

Math(x, \dots) cumsum, cumprod...

Our Solution in R

...plus some other methods...

...and of course functions

Our Solution in R: Example

Calculate Best Estimate (BE)

Our Solution in R: Example

Combine claims and premiums provisions discounting at the EIOPA rates per currency

```
discountedCashFlow = papply(obj$UndiscountedCashFlow[[1]], function(p) {
    keys = cbind(objKeys, p$keys)
    # Relevant discount factors
    subDiscFact = discFact[discFact$curr %in% curr,]
    rownames(subDiscFact) = subDiscFact$curr
    idx = which(names(subDiscFact) == "curr")
    # Cash flow discounting
    disc = as.matrix(curBlend[, curr]) %*% as.matrix(subDiscFact[curr,-idx])
    res = p * pattern(p$keys, disc[, seq_len(ncol(p$pattern)), drop=F])
})
discountedAmount = papply(discountedCashFlow, pRowSums)
```

Aggregate and write out TP respecting

- Same format/granularity as previous processes
- Adding additional reports (intermediate calculation results, aggregate summaries, variable dependencies)

Conclusions

Project achievements

- Accurate calculations (fixed several mistakes)
- Automated and centralized process that frees up resources in the local business units
- Data consistency, save time in audit processes
- Improved flexibility, allows Analysis of Change and other what-if scenarios

R contribution

- Business process clarity, reduce (isolate) complexity
- Code readability, accessibility
- Respecting input and output formats already in place
- Exportable modules to be reused in other applications
- Reproducibility, testability (code versioning, unit testing!)