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Motivation:

• Model uncertainty with variable selection ⇒ how confident
we should be about the final model

• Existence of high multi-level factors - a factor having too
many levels for a GLM structure ⇒ model parsimony and
interpretability issues

• lack of sufficient number of observations
• insignificant levels should be merged (too many parameters)

2 questions to answer:
• Which categorical predictors should be included in the

model?
• Which categories within one categorical predictor should be

distinguished?
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Motivation

Factor collapsing (FC) assesses the optimal manner of categories:
which differs from one another w.r.t dependent variable ⇒
uncertainty about the optimal manner

Bayesian model averaging (BMA) takes such model uncertainty
into consideration:

• variable selection uncertainty
• factor level selection uncertainty
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Example: a question from "faraway" package [1]

Standard GLM output in R,
for "Make" predictor in fre-
quency model

Standard GLM output in R,
for "Kilometres" predictor
in severity model
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Factor collapsing

Set partition: grouping elements within a set into non-empty
subsets, in such a way that every element is included in one and
only one subsets. ("partitions" R package [2])

{{1}, {2}, {3}}
{{1, 2}, {3}}

Partitioning 3-element set {1, 2, 3}: {{1, 3}, {2}}
{{1}, {2, 3}}
{{1, 2, 3}} ⇒ variable removed

Fit each (combination of) partition into a pre-specified model
Bell number increases nearly exponentially
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BMA

Use BMA to average the best models (where possible)

Pr(∆|D) =
K∑

k=1

Pr(∆|Mk ,D)Pr(Mk |D) (1)

P(Mk |D) ≈ exp(−.5BICk)∑K
r=0 exp(−.5BICr )

(2)

• Average over model prediction
• Average over model coefficients

Insight Centre for Data Analytics June 13, 2017 Slide 6



Stochastic search
Number of set partitions increases nearly exponentially
⇒ computationally intensive
⇒ it becomes an optimisation problem
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Simulated Annealing

Global optimisation technique based on Monte Carlo method,
similar to the MC 3 technique proposed in Hoeting et al. (1999) [3].

• Starting from a random state
• Make random state changes, accepting worse moves with

probability determined by temperature
• Reduce temperature after reaching (close-to) equilibrium
• Stop once temperature gets very small

Other stochastic optimisation methods also work for this non-linear
non-differentiable objective function, such as genetic algorithm etc.
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FC-BMA illustration
Comparing FC-BMA with stepwise selection using BIC/AIC:

null model
forward selection
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FC-BMA illustration
Comparing FC-BMA with stepwise selection using BIC/AIC:

null model
forward selection
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FC-BMA illustration
Comparing FC-BMA with stepwise selection using BIC/AIC:

saturated model
backward selection
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FC-BMA illustration
Comparing FC-BMA with stepwise selection using BIC/AIC:

saturated model
backward selection
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FC-BMA illustration
Comparing FC-BMA with stepwise selection using BIC/AIC:

saturated model
backward selection
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FC-BMA illustration
Comparing FC-BMA with stepwise selection using BIC/AIC:

saturated model
backward selection
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FC-BMA illustration
Comparing FC-BMA with stepwise selection using BIC/AIC:

saturated model
backward selection
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FC-BMA illustration
Comparing FC-BMA with stepwise selection using BIC/AIC:

saturated model
backward selection
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FC-BMA illustration
Comparing FC-BMA with stepwise selection using BIC/AIC:
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Following up the example...

Table: Results for collapsing "Make" factor only in frequency model.
Here only the best 5 models (based on their BIC values) are shown.

Make: 1, 2, 3, 4, 5, 6, 7, 8, 9
combination BIC BMA weight

(1,8)(2)(3)(4)(5)(6)(7,9) 10301.11 0.34579
(1,8)(2,5)(3)(4)(6)(7,9) 10301.81 0.24257
(1,7,8)(2)(3)(4)(5)(6)(9) 10303.44 0.10764
(1,7,8)(2,5)(3)(4)(6)(9) 10304.15 0.07541
(1)(2)(3)(4)(5)(6)(7,8,9) 10304.92 0.05136
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Following up the example...

Table: Result for collapsing “Kilometres" factor only in severity model,
only the best 5 models (based on BIC values) are shown.

Kilometres: 1, 2, 3, 4, 5
combinations BIC BMA weight
(1)(23)(45) 1874293 0.90779
(1)(2)(3)(45) 1874299 0.05977
(1)(23)(4)(5) 1874300 0.03043
(1)(2)(3)(4)(5) 1874305 0.00200
(1)(25)(3)(4) 1874338 0.00000
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Irish counties
Irish county level clustering with an Irish GI insurer:

Figure: Frequency Figure: Severity
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County model coef. new coef.
Waterford City -6.6556 -6.6415
Unknown -6.6130 -6.6415
Waterford County -6.6073 -6.6415
Donegal County -6.5959 -6.6415
Offaly County -6.5787 -6.5733
Monaghan County -6.5670 -6.5733
Kildare County -6.5638 -6.5733
Wicklow County -6.5397 -6.5733
Wexford County -6.5217 -6.5733
South Tipperary -6.5063 -6.5001
Cavan County -6.4809 -6.5001
Clare County -6.4764 -6.5001
Cork County -6.4738 -6.5001
Louth County -6.4720 -6.5001
South Dublin -6.4708 -6.5001
Dun Laoghaire-Rathdown -6.4489 -6.4648
Limerick County -6.4473 -6.4648
Cork City -6.4385 -6.4648
Fingal -6.4379 -6.4648
North Tipperary -6.4323 -6.4648
Limerick City -6.4306 -6.4648
Kilkenny County -6.4299 -6.4648
Laois County -6.3923 -6.3766
Carlow County -6.3865 -6.3766
Longford County -6.3813 -6.3766
Westmeath County -6.3808 -6.3766
Dublin City -6.3694 -6.3766
Galway City -6.3421 -6.3766
Galway County -6.3415 -6.3766
Kerry County -6.3323 -6.3766
Meath County -6.3282 -6.3766
Roscommon County -6.3031 -6.3766
Sligo County -6.2503 -6.2106
Leitrim County -6.2282 -6.2106
Mayo County -6.1615 -6.2106
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Irish counties

Figure: Frequency: before
clustering

Figure: Frequency: after
clustering
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Table: (Subset of) Frequency model coefficients for the baseline standard
GLM, and results of FC-BMA. Categorical levels are of increasing order
based on the standard GLM. Only 5 are selected here for illustration.

Std. GLM BMA Model 1 Model 2 Model 3 Model 4 Model 5
BIC 62807.2927 62807.3039 62807.3972 62807.4069 62807.4294
Model weights of all selected models 0.0233 0.0232 0.0221 0.0220 0.0218
Model weights of the 5 models 0.2074 0.2062 0.1968 0.1959 0.1937

Waterford City -6.6556 -6.6359 -6.6414 -6.6399 -6.6326 -6.6341 -6.6311
Unknown -6.6130 -6.6359 -6.6414 -6.6399 -6.6326 -6.6341 -6.6311
Waterford County -6.6073 -6.6359 -6.6414 -6.6399 -6.6326 -6.6341 -6.6311
Donegal County -6.5959 -6.6359 -6.6414 -6.6399 -6.6326 -6.6341 -6.6311
Offaly County -6.5787 -6.6218 -6.5733 -6.6399 -6.6326 -6.6341 -6.6311
Monaghan County -6.5670 -6.6080 -6.5733 -6.5732 -6.6326 -6.6341 -6.6311
Kildare County -6.5638 -6.5695 -6.5733 -6.5732 -6.5689 -6.5674 -6.5645
Wicklow County -6.5397 -6.5695 -6.5733 -6.5732 -6.5689 -6.5674 -6.5645
Wexford County -6.5217 -6.5695 -6.5733 -6.5732 -6.5689 -6.5674 -6.5645
South Tipperary -6.5062 -6.5263 -6.5000 -6.5023 -6.5006 -6.5674 -6.5645
Cavan County -6.4809 -6.5004 -6.5000 -6.5023 -6.5006 -6.5011 -6.4980
Clare County -6.4764 -6.5004 -6.5000 -6.5023 -6.5006 -6.5011 -6.4980
Cork County -6.4738 -6.5004 -6.5000 -6.5023 -6.5006 -6.5011 -6.4980
Louth County -6.4720 -6.5004 -6.5000 -6.5023 -6.5006 -6.5011 -6.4980
South Dublin -6.4708 -6.5004 -6.5000 -6.5023 -6.5006 -6.5011 -6.4980
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Table: Prediction comparison in Swedish TPML dataset, using MSE, Gini
index, concordance correlation coefficient (CCC), Wasserstein distance,
Kolmogorov-Smirnov test (KS-test), KL divergence respectively.

80% and 20% split MSE Gini CCC Wass. KS-test KL

Frequency
no FC-BMA 266.9408 0.8266 0.9968 3.0340 0.0736(0.3045) 0.0122

FC-only 224.7803 0.8267 0.9943 2.9696 0.0788(0.2358) 0.0114
FC-BMA(5) 456.3766 0.8267 0.9973 4.2012 0.0778(0.2535) 0.0113

Severity
no FC-BMA 14748455 0.0567 0.0409 1948.3340 0.4489(0) 0.2191
FC-only 14664567 0.0576 0.0667 1825.0540 0.4067(0) 0.2178
FC-BMA(5) 14666355 0.0576 0.0657 1822.9450 0.4033(0) 0.2178
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Summary

• FC-BMA deals with model selection and uncertainty,
categorical level selection simultaneously.

• It helps improve the model parsimony, interpretability, and
prediction.

• Compared with other existing methods in literature, it does
not require deciding extra parameters.

• It can be a challenge to obtain the optimum through
stochastic optimisation, and may take a long time to reach
the optimum.
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Q & A...
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