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Abstract. k-anonymization techniques have been the focus of intense
research in the last few years. An important requirement for such tech-
niques is to ensure anonymization of data while at the same time min-
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: ABSTRACT Users’ privacy is vulnerable at all stages of the deep learning process. Sensitive information
of users may be disclosed during data collection, during training, or even after releasing the trained learning
model. Differential privacy (DP) is one of the main approaches proven to ensure strong privacy protection in
data analysis. DP protects the users’ privacy by adding noise to the original dataset or the learning parameters.
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ABSTRACT 1.

Machine learning techniques based on neural networks are
achieving remarkable results in a wide variety of domains.
Often, the training of models requires large, representative
datasets, which may be crowdsourced and contain sensitive
information. The models should not expose private informa-
tion in these datasets. Addressing this goal, we develop new
algorithmic techniques for learning and a refined analysis of
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‘We demonstrate that, by tracking detailed information
(higher moments) of the privacy loss, we can obtain
much tighter estimates on the overall privacy loss, both
asymptotically and empirically.

. We improve the computational efficiency of differen-

tially private training by introducing new techniques.
These techniques include efficient algorithms for com-
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