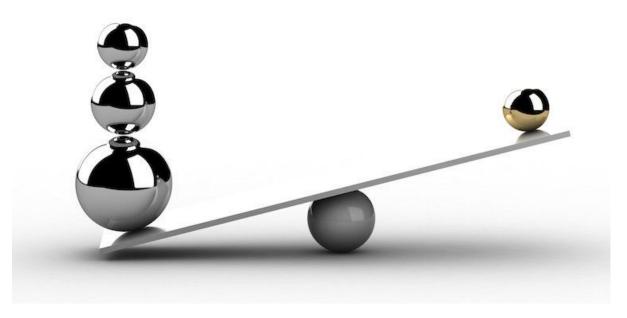
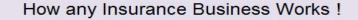
Generative **Adversarial Networks (GANs)** for data imbalance

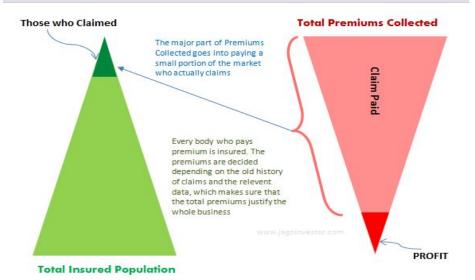
Armando Vieira & Javier Rodriguez Zaurin

Data imbalance in insurance - why it matters?



Data imbalance in insurance - why it matters?





Disclaimer - The Above chart explains an average year. While the above situation might not be true for a particular year. Over a very long term, this is how the insurance business depends on for success. The overall success would depend on various factors like premium pricing, claim handling and other many factors which cant be discussed here.

Created by : www.jagoinvestor.com

1.

Myths Around Insurance modeling

Statistics are there for a reason...

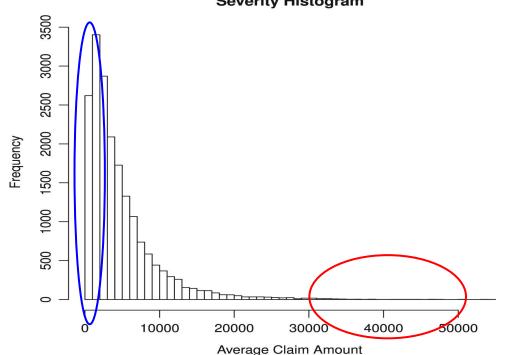
- Data follows **Poisson** / overdispersed Poisson / Gamma distributions
- There are **well defined quantities** we can always compute
 - 🗆 mean
 - \Box standard deviation
 - □ skewness
- Data is stationary (i.e. The rate at which events occur is constant)
- Events are independent (i.e. The occurrence of one event does not affect the probability that a second event will occur
- Pooling solves the issues

The mean is meaningless

In Insurance only two types of clients matter

Clients that never claims
Clients with large claims

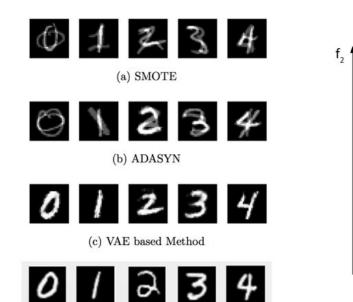
By focusing on the extremes we can better model the important factors



Severity Histogram

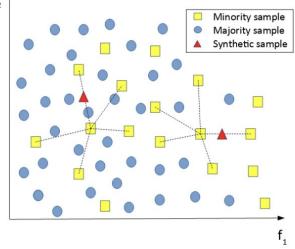
Imbalance Datasets

Techniques to handle imbalance data



(d) GAN based Method

SMOTE + Tomek



GANS

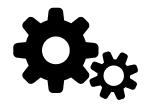
Generative Adversarial Networks

GANs

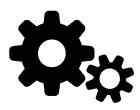
3. Deep Learning

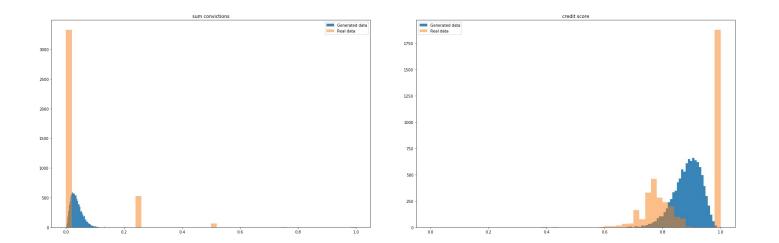
Deep Learning Achieves Photorealistic Image Generation

Deep learning can recognize and generate images. Early results were blurry and unconvincing, as seen on the left. The latest results approach photorealism, as seen on the right.

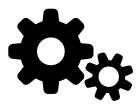


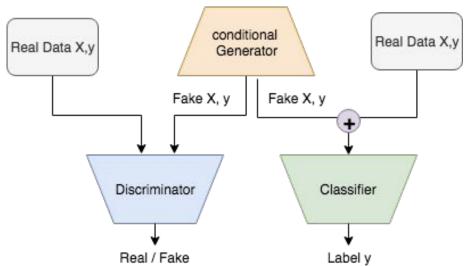
GANs were very effective for images, but how about tabular data?





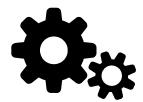
Conditional GAN





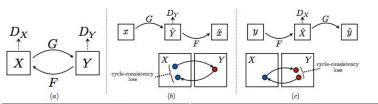
Z, label (y)

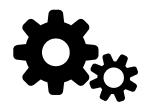
Conditional GAN



0	1	2	3	4	5	6	2	9	9
0	1	3	3	4	5	8	7	8	9
0	1	2	3	4	5	6	4	Ø	q
0	Ì	З	Э	Y	5	6	7	8	9
٥	1	2	3	9	\$	ø	7	8	9

CycleGAN



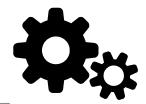


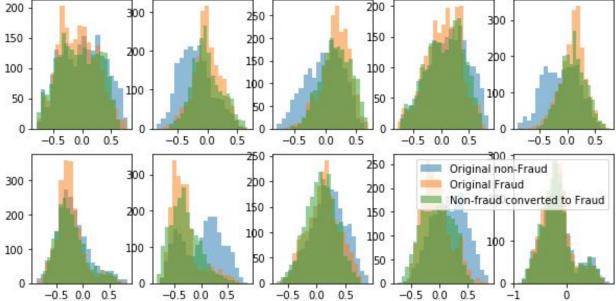
Horse → Zebra

or ...

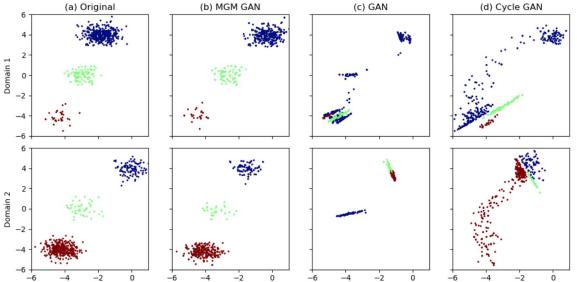
No Claim \longrightarrow Claim

CycleGAN for fraud detection + sparse Autoencoders

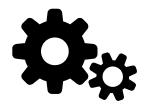




Topology preserving CycleGAN

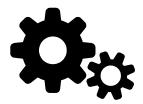


Results



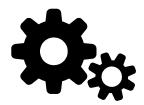
	Precision	Recall	F1-score	
No augmentation	0.88	0.77	0.79	
SMOTE	0.94	0.79	0.85	
ADASYNE	0.79	0.76	0.77	
cGAN	0.90	0.85	0.87	
cycleGAN	0.92	0.83	0.87	

Implementation Details



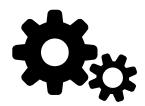
- Data has to be converted into a dense representation
- Domains have to be consistently related retain same semantic features.
- Loads of tricks (weight clipping, regularizers, training schedule)
- Consistency over time (i.e. stationary)
- Avoid mode collapsing
- Diversity enforcing with conditional batch normalization and noise

How to train GANs



- Small (decreasing) learning rate
- Different optimizers for encoder and generator
- Train generator multiple times for each discriminator
- Batch normalization and Instance Batch Normalization

Conclusions:



- Focus on the **extremes** (less data, better results)
- Use **augmentation** to alleviate imbalance data
- **GANS can be effective** under some conditions